Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 467-472    https://doi.org/10.11896/j.issn.1005-023X.2018.03.018
     材料综述 |
块体非晶合金韧塑性研究现状
赵燕春1,2,许丛郁1,袁小鹏1,何旌1,寇生中1,2,李春燕1,2,袁子洲1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research Status of Plasticity and Toughness of Bulk Metallic Glass
Yanchun ZHAO1,2,Congyu XU1,Xiaopeng YUAN1,Jing HE1,Shengzhong KOU1,2,Chunyan LI1,2,Zizhou YUAN1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology,Lanzhou 730050
2 College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1638KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

提高室温塑性和断裂韧性是块体非晶合金作为先进结构材料应用亟待解决的关键科学问题,理解应力加载时的室温塑性变形机制是提高其韧塑性的前提。块体非晶合金通过高度局域化的剪切带形成和扩展而产生塑性变形,提高其室温塑性取决于剪切带的均匀化分布程度。研究者们在该领域做了深入细致的研究工作,如喷丸、设计高泊松比的非晶、设计具有微观起伏结构的铸态相分离非晶以及引入晶相增韧等,使块体非晶合金的韧塑性得到有效改善。从第二相韧塑化非晶基复合材料、泊松比判据、尺寸效应、非晶表面涂层增韧、通过预变形预制多重剪切带改善塑性、冷热循环处理抗非晶合金老化等方面,综述了块体非晶合金韧塑化的研究热点,韧塑性判据,控制剪切带形成、扩展和分布的方法,指出获得良好拉伸塑性和断裂韧性仍是不同体系非晶合金的研究目标和重要发展方向,推动着块体非晶合金作为新型功能结构材料的应用和产业化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕春
许丛郁
袁小鹏
何旌
寇生中
李春燕
袁子洲
关键词:  块体非晶合金  力学性能  韧塑性  研究现状    
Abstract: 

How to enhance room-temperature plasticity and toughness have been obstacles for advanced functional structural applications of bulk amorphous alloy. Understanding of the plastic deformation mechanism under loading at room temperature is a precondition for plasticity and toughness improvements. Formation and propagation of highly localized shear bands produce the plastic deformation of bulk amorphous alloy. And to increase the room temperature plasticity depends on how to make the uniform distribution of the shear band. A thorough and detailed research in the field have been done and obtained different methods for plasticity and toughness improvements, such as shot peening, high Poisson’s ratio of amorphous alloy system design, as cast phase-separated amorphous alloy system with microstructural fluctuation, introduction of crystalline phase, and so on. In this paper, the research hot spot, the plastic toughness criterion, the method of finding the formation and expansion of the block amorphous alloys are reviewed from six aspects, that is, the second phase toughened amorphous matrix composites, Poisson’s ratio criterion, size effect, surface modifications, preforming multiple shear bands improves preform plasticity, and thermal cycling induced rejuvenation, etc. The paper also points out that to obtain excellent tensile ductility and fracture toughness, is the research object and important development direction of different amorphous alloy systems, and promotes the application and industrialization of bulk amorphous alloy as a new type of functional structural material.

Key words:  bulk metallic glass    mechanical property    plasticity and toughness    research status
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TG139.8  
基金资助: 国家自然科学基金(51661017);国家自然科学基金(51551101);国家自然科学基金(51571105);国家自然科学基金(51661016);甘肃省杰出青年基金(17JR5RA108);兰州市科技发展计划(2014-2-9)
作者简介:  赵燕春:女,1984年生,博士,副教授,研究方向为金属凝固理论、复合材料开发与性能 E-mail: yanchun_zhao@163.com
引用本文:    
赵燕春,许丛郁,袁小鹏,何旌,寇生中,李春燕,袁子洲. 块体非晶合金韧塑性研究现状[J]. 《材料导报》期刊社, 2018, 32(3): 467-472.
Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass. Materials Reports, 2018, 32(3): 467-472.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.018  或          https://www.mater-rep.com/CN/Y2018/V32/I3/467
  
  
  
  
1 Telford M . The case for bulk metallic glass[J]. Materials Today, 2004,7(3):36.
2 Wang J, Li R, Hua N, Zhang T . Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity[J]. Journal of Mate-rials Research, 2011,26:2072.
3 Wang W H . The nature and properties of amorphous matter[J]. Progress in Physics, 2013,33(5):177(in Chinese).
3 汪卫华 . 非晶态物质的本质和特性[J]. 物理学进展, 2013,33(5):177.
4 Wang W H . The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science, 2012,57:487.
5 Cao Q P, Liu J W, Yang K J , et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass[J]. Acta Materialia, 2010,56:1276.
6 Liu Y H, Wang G, Wang R J , et al. Super plastic bulk metallic glasses at room temperature[J]. Science, 2007,315:1385.
7 Chen L Y, Fu Z D, Zhang G Q , et al. New class of plastic bulk metallic glass[J]. Physical Review Letters, 2008,100(7):075501.
8 Zhang H F, Li H, Wang A M , et al. Synjournal and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite[J]. Intermetallics, 2009,17(12):1070.
9 Chen G, Bei H, Cao Y, Toyoda Y . Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases[J]. Applied Physics Letters, 2009,95:081908.
10 Bian X L, Li J, Wang G . Intermittent plastic flow of Mg-based metallic glass under nanoindentation[J]. Materials China, 2014,33(5):265(in Chinese).
10 卞西磊, 李洁, 王刚 . 纳米压入下镁基非晶合金的间歇性塑性流动[J]. 中国材料进展, 2014,33(5):265.
11 Eckert J, Das J, Pauly S , et al. Mechanical properties of bulk metallic glasses and composites[J]. Journal of Materials Research, 2007,22(2):285.
12 Chen M W . Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility[J]. Annual Review of Mate-rials Research, 2008,38:445.
13 Schuh C A, Hufnagel T C, Ramamurty U . Mechanical behavior of amorphous alloys[J]. Acta Materialia, 2007,55(12):4067.
14 Yuan X P, Kou S Z, Zhao Y C , et al. Microstructure and mechanical properties of (Cu0.7Fe0.3)88-xAl12Zrx by semi-solid processing[J]. Chinese Journal of Rare Metals, 2014,38(6):1011(in Chinese).
14 袁小鹏, 寇生中, 赵燕春 , 等. 半固态处理对(Cu0.7Fe0.3)88-xAl12-Zrx非晶复合材料组织和力学性能的影响[J]. 稀有金属, 2014,38(6):1011.
15 Qiao J, Jia H, Liaw P K . Metallic glass matrix composites[J]. Materials Science and Engineering R:Reports, 2016,100:1.
16 Eckert J, Das J, Pauly S , et al. Processing routes, microstructure and mechanical properties of metallic glasses and their composites[J]. Advanced Engineering Materials, 2007,9(2):443.
17 Hays C C, Kim C P, Johnson W L . Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersion[J]. Physical Review Letters, 2000,84(13):2901.
18 Hofmann D C, Suh J Y, Wiest A , et al. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008,451(28):1085.
19 Das J, Tang M B, Wang W H , et al. “Work-hardenable” ductile bulk metallic glass[J]. Physical Review Letters, 2005,94:205501.
20 Wu Y, Xiao Y H, Chen G L , et al. Bulk metallic glass composite with transformation-mediated work-hardening and ductility[J]. Advanced Materials, 2010,22(25):2770.
21 Wu Y, Wang H, Wu H H , et al. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Materialia, 2011,59:2928.
22 Gargarella P, Pauly S, Song K K , et al. Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Materialia, 2013,61:151.
23 Churyumov A Y, Bazlov A I, Solonin A N , et al. Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase[J]. Physics of Metals and Metallography, 2013,114(9):773.
24 Chen H S, Krause J T, Coleman E . Elastic constants, hardness and their implications to flow properties of metallic glasses[J]. Journal of Non-Crystalline Solids, 1975,18(2):157.
25 Zhang Y , Greer A L. Correlations for predicting plasticity or brittleness of metallic glasses[J].Journal of Alloys and Compounds, 2007, 434- 435:2.
26 Wang W H . Family traits[J]. Nature Materials, 2012,11:275.
27 Wang W H . Correlation between relaxation and deformation in metallic glasses[J]. Journal of Applied Physics, 2011,110:053521.
28 Simon Pauly, Jayanta Das, Cécile Duhamel , et al. Martensite formation in a ductile Cu47.5Zr47.5Al5 bulk metallic glass composite[J]. Advanced Engineering Materials, 2007,9(6):487.
29 Conner R D, Li Y, Nix W D , et al. Shear band spacing under bending of Zr-based metallic glass plates[J]. Acta Materialia, 2004,52(8):2429.
30 Conner R D, Johnson W L, Paton N E , et al. Shear bands and crac-king of metallic glass plates in bending[J]. Journal of Applied Physics, 2003,94(2):904.
31 Guo H, Yan P F, Wang Y B , et al. Tensile ductility and necking of metallic glass[J]. Nature Materials, 2007,6(10):735.
32 Liu Na, Cai Hongnian, Wang Lu , et al. Behavior of multiple shear bands in Zr-based bulk metallic glass under quasi-static compressive loading[J].Transactions of Beijing Institute of Technology,2006(10):916(in Chinese).
32 刘娜, 才鸿年, 王鲁 , 等. Zr基非晶合金准静态压缩下的多重剪切带行为[J].北京理工大学学报,2006(10):916.
33 Hufnagel T C, Schuh C A, Falk M L . Deformation of metallic glasses: Recent developments in theory, simulations, and experiments[J]. Acta Materialia, 2016,109:375.
34 Yang G N, Shao Y, Yao K F . The shear band controlled deformation in metallic glass: A perspective from fracture[J]. Scientific Reports, 2016,6:21852.
35 Lee M H . Deformation-induced microstructural heterogeneity in monolithic Zr44Ti11Cu9.8 Ni10.2Be25 bulk metallic glass[J]. Physica Status Solidi-Rapid Research Letters, 2009,3(2-3):46.
36 Yokoyama Y . Ductility improvement of Zr-Cu-Ni-Al glassy alloy[J]. Journal of Non-Crystalline Solids, 2003,316(1):104.
37 Wang J G, Zhao D Q, Pan M X , et al. Mechanical heterogeneity and mechanism of plasticity in metallic glasses[J]. Applied Physics Letters, 2009,94(3):31904.
38 Chen M, Inoue A, Zhang W , et al. Extraordinary plasticity of ductile bulk metallic glasses[J]. Physical Review Letters, 2006,96(24):245502.
39 Boucharat N, Hebert R, Rosner H , et al. Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation[J]. Scripta Materialia, 2005,53(7):823.
40 Lee J C . Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite[J]. Acta Materialia, 2004,52(6):1525.
41 Lee S W, Huh M Y, Fleury E , et al. Crystallization-induced plasti-city of Cu-Zr containing bulk amorphous alloys[J]. Acta Materialia, 2006,54(2):349.
42 Lee S W, Huh M Y, Chae S W , et al. Mechanism of the deformationinduced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression[J]. Scripta Materialia, 2006,54(8):1439.
43 Lee J C, Kim Y C, Ahn J P , et al. Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies[J]. Acta Materialia, 2005,53(1):129.
44 Zhang Y, Wang W H, Greer A L . Makingmetallic glasses plastic by control of residual stress[J]. Nature Materials, 2006,5:857.
45 Qiu S B, Yao K F . Novel application of the electrodeposition on bulk metallic glasses[J]. Applied Surface Science, 2008,255(5):3454.
46 Chen W, Chan K C, Yu P , et al. Encapsulated Zr-based bulk metallic glass with large plasticity[J]. Materials Science and Engineering:A, 2011,528(6):2988.
47 Nieh T G, Yang Y, Lu J , et al. Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview[J]. Progress in Natural Science: Materials International, 2012,22(5):355.
48 Meng M M, Gao Z P, Ren L W , et al. Improved plasticity of bulk metallic glasses by electrode position[J]. Materials Science and Engineering:A, 2014,615:240.
49 Ren L W, Yang F Q, Jiao Z M , et al. Plasticity enhancement in Ni-P amorphous alloy/Ni/Zr-based metallic glass composites with a sandwich structure[J]. Materials Science and Engineering:A, 2015,643:175.
50 Ketov S V, Sun Y H, Nachum S , et al. Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015,524(7564):200.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed