Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 398-404    https://doi.org/10.11896/j.issn.1005-023X.2018.03.009
     材料综述 |
两类典型的低温应用红外探测材料研究
罗炳威,刘大博,罗飞,田野,陈冬生,周海涛
北京航空材料研究院,北京 100095
Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU
Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

红外探测器件是现代军用武器装备目标识别的核心构件,而红外探测材料的性能将直接影响器件的性能水平。综述了两类典型的低温应用红外探测材料研究进展,以红外探测材料研究和应用的尺度为分类标准,分别对微米尺度的窄带隙直接半导体碲镉汞和基于量子效应的四种低维材料进行了介绍,并指出了当前红外探测材料研究存在的问题和发展的方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗炳威
刘大博
罗飞
田野
陈冬生
周海涛
关键词:  碲镉汞  红外探测  低温    
Abstract: 

Infrared detector device is the core parts of the modern military weapons target recognition, and the performance of the infrared detection material will directly decide the performance of the device level. The research progress of two typical materials of infrared detection applied under low temperature is reviewed. Based on the classification standard of the scale of the infrared material, the direct semiconductor of HgCdTe with narrow bandgap and the infrared material based on the quantum effects are both introduced. Meanwhile, the current problems existing in the research of infrared detection materials and the future development direction are proposed as well.

Key words:  HgCdTe    infrared detection    low temperature
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51602299);国家自然科学基金(51302255)
作者简介:  罗炳威:男,1986年生,博士,工程师,从事纳米光电材料与器件的研究 E-mail: luobingwei@126.com
引用本文:    
罗炳威,刘大博,罗飞,田野,陈冬生,周海涛. 两类典型的低温应用红外探测材料研究[J]. 《材料导报》期刊社, 2018, 32(3): 398-404.
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review. Materials Reports, 2018, 32(3): 398-404.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.009  或          https://www.mater-rep.com/CN/Y2018/V32/I3/398
  
  
  
  
  
  
  
1 Chen C S, Liu R T, Liu S H . New development of infrared detector[J]. Journal of Atmospheric and Environmental Optics, 2013,8(1):1(in Chinese).
1 陈长水, 刘荣挺, 刘颂豪 . 红外探测器的最新进展[J]. 大气与环境光学学报, 2013,8(1):1.
2 Vishnyakov A V, Stuchinsky V A, Brunev D V , et al. Analysis of charge-carrier diffusion in the photosensing films of HgCdTe infrared focal plane array photodetectors[J]. Journal of Applied Physics, 2015,118(12):124508.
3 Gong H M, Liu D F . Developments and trends in spaceborne infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):18(in Chinese).
3 龚海梅, 刘大福 . 航天红外探测器的发展现状与进展[J]. 红外与激光工程, 2008,37(1):18.
4 Dong X L, Mao C L, Yao C H , et al. Progress of research on the pyroelectric ceramic materials for uncooled infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):37(in Chinese).
4 董显林, 毛朝梁, 姚春华 , 等. 非制冷红外探测器用热释电陶瓷材料研究进展[J]. 红外与激光工程, 2008,37(1):37.
5 Rogalski A, Antoszewski J, Faraone L , et al. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009,105(9):091101.
6 Rogalski A . Toward third generation HgCdTe infrared detectors[J]. Journal of Alloys and Compounds, 2004,371(1):53.
7 Wang G W, Xu Y Q, Niu Z C . Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions[J]. Scientia Sinica Physica Mechainica & Astronomica, 2014,44(4):368(in Chinese).
7 王国伟, 徐应强, 牛智川 . 新型低维结构锑化物红外探测器的研究与挑战[J]. 中国科学:物理学力学天文学, 2014,44(4):368.
8 Kinch M A . HgCdTe: Recent trends in the ultimate IR semiconductor[J]. Journal of Electronic Materials, 2010,39(7):1043.
9 Guo R P, Li J, Sun B S . New development of foreign infrared detector material technology[J]. Ordnance Material Science and Enginee-ring, 2009,32(3):96(in Chinese).
9 郭瑞萍, 李静, 孙葆森 . 国外红外探测器材料技术新进展[J]. 兵器材料科学与工程, 2009,32(3):96.
10 Piotrowski J, Gawron W . Ultimate performance of infrared photodetectors and figure of merit of detector material[J]. Infrared Physics & Technology, 1997,38(2):63.
11 Colombo L, Chang R R, Chang C J , et al. Growth of Hg-based alloys by the traveling heater method[J]. Journal of Vacuum Science Technology, 1988,A6(4):2795.
12 Norton P . HgCdTe infrared detectors[J]. Opto-Electronics Review, 2002,10(3):159.
13 Radhakrishnan J K, Sitharaman S, Gupta S C . Surface morphology of Hg0.8Cd0.2Te epilayers grown by LPE using horizontal slider[J]. Applied Surface Science, 2003,207:33.
14 Wilson J A, Patten E A, Chapman G R , et al. Integrated two-color detection for advanced focal plane array (FPA) applications[J]. Proceeding of SPIE, 1994,2274:117.
15 Rais M H, Musca C A, Dell J M , et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology[J]. Microelectronics Journal, 2000,31(7):545.
16 Bevan M J, Chen M C, Shih H D . High-quality p-type Hg1-xCdxTe prepared by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1995,67(23):3450.
17 Peterson J M, Franklin J A, Readdy M , et al. High-quality large-area MBE HgCdTe/Si[J]. Journal of Electronic Materials, 2006,35(6):1283.
18 Bornfreund R, Rosbeck J P, Thai Y N , et al. High-performance LWIR MBE-grown HgCdTe/Si focal plane arrays[J]. Journal of Electronic Materials, 2007,36(8):1085.
19 Radford W A, Patten E A, King D F , et al. Third generation FPA development status at raytheon vision systems[J]. Proceeding of SPIE, 2005,5783:331.
20 Smith E P G, Patten E A, Goetz P M , et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors[J]. Journal of Electronic Materials, 2006,35(6):1145.
21 Simingalam S, Vanmil B L, Chen Y P , et al. Development and fabrication of extended short wavelength infrared HgCdTe sensors grown on CdTe/Si substrates by molecular beam epitaxy[J]. Solid-State Electronics, 2014,101:90.
22 Bommena R, Ketharanathan S, Wijewarnasuriya P S , et al. High-performance MWIR HgCdTe on Si substrate focal plane array deve-lopment[J]. Journal of Electronic Materials, 2015,44(9):3151.
23 Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in HgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 2007,25(6):1776.
24 Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in CdHgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B, 2008,26(2):525.
25 Selvig E, Tonheim C R, Lorentzen T , et al. Defects in HgTe and CdHgTe grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 2008,37(9):1444.
26 Haakenaasen R, Selvig E, Tonheim C R , et al. HgCdTe research at FFI: Molecular beam epitaxy growth and characterization[J]. Journal of Electronic Materials, 2010,39(7):893.
27 Haakenaasen R, Steen H, Selvig E , et al. Imaging photovoltaic infrared CdHgTe detectors[J]. Physica Scripta, 2006,2006(T126):31.
28 Haakenaasen R, Steen H, Lorentzen T , et al. Planar n-on-p ion milled mid-wavelength and long-wavelength infrared diodes on molecular beam epitaxy vacancy-doped CdHgTe on CdZnTe[J]. Journal of Electronic Materials, 2002,31(7):710.
29 Haakenaasen R, Steen H, Selvig E , et al. Imaging one-dimensional and two-dimensional planar photodiode detectors fabricated by ion milling molecular beam epitaxy CdHgTe[J]. Journal of Electronic Materials, 2005,34(6):922.
30 Chen L, Fu X L, Wang W Q , et al. Progress on HgCdTe MBE for the application of IRFPAs[J]. Scicentia Sinica Physica Mechanica & Astronomica, 2014,4(44):341(in Chinese).
30 陈路, 傅祥良, 王伟强 , 等. 面向HgCdTe红外焦平面探测器应用的分子束外延材料研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):368.
31 Mitra P, Case F C, Reine M B , et al. Progress in MOVPE of HgCdTe for advanced infrared detectors[J]. Journal of Electronic Materials, 1998,27(6):510.
32 Reine M B, Hairston A , O’Dette P, et al. Simultaneous MW/LW dual-band MOVPE HgCdTe 64 × 64 FPAs[J]. Proceeding of SPIE, 2008,3379:200.
33 Maxey C D, Camplin J P, Guilfoy I T , et al. Metal-organic vapor-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates[J]. Journal of Electronic Materials, 2003,32(7):656.
34 Piotrowski A, Madejczyk P, Gawron W , et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007,49(3):173.
35 Khatei J, Pendyala N B , Rao K S R K. Solvothermal synjournal of Hg1-xCdxTe nanostructures-their structural and optical properties[J]. Journal of Alloys and Compounds, 2011,509(13):4632.
36 Selvig E, Hadzialic S, Skauli T , et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006,2006(T126):115.
37 Haakenaasen R, Selvig E, Foss S , et al. Segmented nanowires of HgTe and Te grown by molecular beam epitaxy[J]. Applied Physics Letters, 2008,92(13):133108.
38 Haakenaasen R, Selvig E, Hadzialic S , et al. Nanowires in the Cd-HgTe material system[J]. Journal of Electronic Materials, 2008,37(9):1311.
39 Shao J, Lü X, Guo S L , et al. Impurity levels and bandedge electronic structure in as-grown arsenic-doped HgCdTe by infrared photoreflectance spectroscopy[J]. Physical Review B, 2009,15(80):155125.
40 Chang Y, Grein C H, Zhao J , et al. Carrier recombination lifetime characterization of molecular beam epitaxially grown HgCdTe[J]. Applied Physics Letters, 2008,93(19):192111.
41 褚君浩 . 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.
42 Shao J, Yue F Y, Lü X , et al. Photomodulated infrared spectroscopy by a step-scan fourier transform infrared spectrometer[J]. Applied Physics Letters, 2006,89(18):182121.
43 Shao J, Lü X, Lu W , et al. Cutoff wavelength of Hg1-xCdxTe epilayers by infrared photoreflectance spectroscopy[J]. Applied Phy-sics Letters, 2007,90(17):171101.
44 Shao J, Chen L, Lu W , et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010,96(12):121915.
45 Martyniuk P, Antoszewski J, Martyniuk M , et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014,1(4):041102.
46 Sakimoto K K, Wong A B, Yang P D . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016,351(6268):74.
47 Zhang Y H, Ma W Q, Wei Y , et al. Long wavelength, very long wavelength and narrow-band long-/very-long wavelength two-color type-Ⅱ InAs/GaSb superlattice photodetectors[J]. Scientia Sincia Physica Mechanica & Astronomica, 2014,4(44):390(in Chinese).
47 张艳华, 马文全, 卫炀 , 等. 长波和甚长波及其双色InAs/GaSb二类超晶格红外探测器的研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):390.
48 Levine B F . Quantum-well infrared photodetectors[J]. Journal of Applied Physics, 1993,74(8):1.
49 Haugan H J, Szmulowicz F, Brown G J , et al. Band gap tuning of InAs/GaSb type-Ⅱ superlattices for mid-infrared detection[J]. Journal of Applied Physics, 2004,96(5):2580.
50 Das B, Singaraju P . Novel quantum wire infrared photodetectors[J]. Infrared Physics and Technology, 2005,46(3):209.
51 Germann T D, Strittmatter A, Pohl J , et al. High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots[J]. Applied Physics Letters, 2008,92(10):101123.
52 Ting D Z, Soibel A, Rafol S B , et al. Development of quantum well, quantum dot, and type Ⅱ superlattice infrared photodetectors[J]. Journal of Applied Remote Sensing, 2014,8(1):084998
53 Rogalski A . InAs1-xSbx in frared detectors[J]. Progress in Quantum Electronics, 1989,13(3):191.
54 Xing W R, Li J . Recent progress of quantum well infrared photodetectors[J]. Laser & Infrared, 2013,43(2):144(in Chinese).
54 邢伟荣, 李杰 . 量子阱红外探测器最新进展[J]. 激光与红外, 2013,43(2):144.
55 Nasr A, Aboshosha A , AlAdl S M. Dark current characteristics of quantum wire infrared photodetectors[J]. IET Optoelectronics, 2007,3(1):140.
56 Jia Y N, Xu B, Wang Z G . Research progress on quantum dot infrared photodetectors[J]. Semiconductor Optoelectronics, 2012,33(3):314(in Chinese).
56 贾亚楠, 徐波, 王占国 . 量子点红外探测器的研究进展[J]. 半导体光电, 2012,33(3):314.
57 Rogalski A . Recent progress in third generation infrared detectors[J]. Journal of Modern Optics, 2010,57(18):1716.
58 Gunapala S D, Bandara S V, Liu J K , et al. 1024×1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications[J]. Semiconductor Science Technology 2005,20(5):473.
59 Razeghi M, Nguyen B M . Band gap tunability of type Ⅱ antimonide-based superlattices[J]. Physics Procedia, 2010,3(2):1207.
60 Haddadi A, Ramezani-Darvish S, Chen G X , et al. High operability 1024×1024 long wavelength type-Ⅱ superlattice focal plane array[J]. IEEE Journal Quantum Electronics, 2012,48(2):221.
61 Phillips J, Kamath K, Brock T , et al. Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors[J]. Applied Physics Letters, 1998,72(26):3509.
62 Bhattacharya P, Mi Z . Quantum-dot optoelectronic devices[J]. Proceeding of the IEEE, 2007,95(9):1723.
63 Campbell J C, Madhukar A . Quantum-dot infrared photodetectors[J]. Proceeding of the IEEE, 2007,95(9):1815.
64 Crouse D, Crouse M, Mahapatra S , et al. Ⅱ-Ⅵ semiconductor quantum wire fabrication and application to IR detection[J]. NSTI-Nanotechnology, 2006,3:117.
65 Tsai C L, Cheng K Y, Chou S T . InGaAs quantum wire infrared photodetector[J]. Applied Physics Letters, 2007,91(18):181105.
66 Ting D Z, Hill C J, Soibel A , et al. Antimonide-based barrier infrared detectors[J]. Proceeding of SPIE, 2010,7660:56.
67 El_tokhy M S, Mahmoud I I, Konber H A , et al. Comparison stu-dies of infrared photodetectors with a quantum-dot and a quantum-wire base[J]. Opto-Electronics Review, 2011,19(4):405.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[3] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[4] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[5] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[6] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[7] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[8] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[9] 王琦胜, 何发旺, 刘振国, 王经伟, 李红玉. 不同聚酯二元醇合成聚氨酯对导电银浆性能的影响[J]. 材料导报, 2024, 38(13): 22110234-6.
[10] 焦纪强, 蒙峻, 罗成, 柴振, 谢文君. Xe23+离子束轰击低温工况下的无氧铜表面解吸性能研究[J]. 材料导报, 2024, 38(1): 22040201-5.
[11] 马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
[12] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[13] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[14] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[15] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed