Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 147-152    https://doi.org/10.11896/j.issn.1005-023X.2017.06.029
  计算模拟 |
微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究
丁军, 刘泊, 王路生, 黄霞, 宋鹍
重庆理工大学机械工程学院, 重庆 400054
Microscale Molecular Dynamics Simulation of Different Factors Influence on
Melting Point of Single Crystal Copper
DING Jun, LIU Bo, WANG Lusheng, HUANG Xia, SONG Kun
School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054
下载:  全 文 ( PDF ) ( 2731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于分子动力学方法,利用嵌入原子势(EAM)函数,在微观尺度下研究了影响单晶铜熔点的多种因素。首先利用势函数计算单晶铜的晶格常数和弹性常数,以此验证本研究所采用势函数的准确性,然后利用能量体积法、径向分布函数法和键对分析技术对模拟得到的结果进行分析,测得单晶铜熔点约为1 380 K。分析了模型大小、升温速率、晶体缺陷对铜熔点的影响,研究发现模型大小、升温速率对熔点的影响不大,随着升温速率的增大,达到熔点所需的时间越短。晶体缺陷的存在使金属材料晶格点阵稳定性下降,熔化需要的热量减少,熔点相应降低,与实际熔点情况一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁军
刘泊
王路生
黄霞
宋鹍
关键词:  分子动力学  单晶铜熔点  嵌入原子势  径向分布函数  键对分析    
Abstract: Based on the molecular dynamics method, the melting process of single crystal copper was simulated by embedded atom potential (EAM) function. Firstly, using the potential function, the lattice constants and elastic constants of single crystal copper were calculated to verify the accuracy of the selected potential function, which ensured the accuracy of the calculation of the mel-ting point of single crystal copper. Then, energy volume method, radial distribution function method and bond pair analysis technique were adopted to analyze the simulation results. The conclusion was that the melting point of single crystal copper was about 1 380 K. At the same time, the influence of model size, heating rate, crystal defects on melting point were also analyzed. It could be found that the model size and heating rate had little effect on the melting point. As the heating rate increased, the time required to reach the melting point was shorter. The existence of crystal defects leaded to the decrease of lattice stability of metallic materials, a reduction in the quantity of heat required by melting and a corresponding decrease of the melting point. Through the calculation and analysis, the melting point of single crystal copper in this paper was in line with the actual melting point.
Key words:  molecular dynamics    single crystal copper    embedded atom potential    radial distribution function    key pair analysis
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金联合基金(U1530140);国家自然科学基金(11302272);重庆市基础与前沿研究计划项目合同(CSTC2016JCYJA0517)
作者简介:  丁军:男,1978年生,博士,教授,研究方向为先进材料的力学性能研究、跨尺度数值模拟等 刘泊:男,硕士研究生,研究方向为跨尺度数值模拟,E-mail:dingjunawen@126.com
引用本文:    
丁军, 刘泊, 王路生, 黄霞, 宋鹍. 微观尺度下单晶铜熔点多因素影响的分子动力学模拟研究[J]. 《材料导报》期刊社, 2017, 31(6): 147-152.
DING Jun, LIU Bo, WANG Lusheng, HUANG Xia, SONG Kun. Microscale Molecular Dynamics Simulation of Different Factors Influence on
Melting Point of Single Crystal Copper. Materials Reports, 2017, 31(6): 147-152.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.029  或          https://www.mater-rep.com/CN/Y2017/V31/I6/147
1 Wen Yuhua, Zhu Ruzeng, Zhou Fuxin,et al. The key technology of molecular dynamics simulation [J]. Adv Mech,2003(1):65(in Chinese).
文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003(1):65.
2 Chen Qiang, Cao Honghong, Huan Haibo. A research on the intera-tomic potential in molecular dynamics (MD) [J]. J Tianjin University of Technology,2004(2):101(in Chinese).
陈强,曹红红,黄海波.分子动力学中势函数研究[J]. 天津理工学院学报,2004(2):101.
3 Zhang Qiang, Liu Xiaomin. Calculation and verification of embedded atomic potential of titanium metal [J]. Development Application Mater,2013(3):31(in Chinese).
张强,刘小敏. 金属钛嵌入式原子势的计算及验证[J]. 材料开发与应用,2013(3):31.
4 Yang Hong, Lv Yongjun, Chen Min, et al. Molecular dynamics simulation of the melting point and specific heat of NiAl alloy [J]. Sci China (Series G: Physics and mechanics of Astronomy),2007(3):282(in Chinese).
杨弘,吕勇军,陈民,等.Ni3Al合金熔点与比热的分子动力学模拟[J]. 中国科学(G辑:物理学 力学 天文学),2007(3):282.
5 He Anmin, Qin Chensen, Shao Jianli, et al. The anisotropy of surface melting metal Al molecular dynamics simulation [J]. Acta Phys Sin,2009(4):2667(in Chinese).
何安民,秦承森,邵建立,等. 金属Al表面熔化各向异性的分子动力学模拟[J]. 物理学报,2009(4):2667.
6 Wang Hailong,Wang Xiuxi,Liang Haiye. Molecular dynamics simulation and analysis of bulckand surface melting processes for metal Cu [J]. Acta Metall Sin,2005(6):568(in Chinese).
王海龙,王秀喜,梁海弋.金属Cu体熔化与表面熔化行为的分子动力学模拟与分析[J]. 金属学报,2005(6):568.
7 Ju Yuanyuan,Zhang Qingming,Ji Guangfu,et al. Molecular dyna-mics simulation on melting of single crystal aluminum under static high pressure [J]. Acta Armamentarii,2014(S2):57(in Chinese).
巨圆圆,张庆明,姬广富,等.单晶铝静高压熔化的分子动力学模拟[J].兵工学报,2014(S2):57.
8 Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition [J]. J Computational Phys,2003,190(1):249.
9 Allen M P. Tildesley D J. Computer simulation of liquids [M]. Oxford:Clarendon Press,Oxford University,1987.
10 Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon [J]. Phys Rev B,1985,31(8):5262.
11 Daw M S, Baskes M. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys Rev B,1984,29(12):6443.
12 Finnis M, Sinclair J. A simple empirical N-body potential for transition metals [J]. Philosophical Magazine A,1984,50(1):45.
13 http://www.webelements.com/copper/crystal_structure.html.
14 Overton W C Jr, Gaffney J. Temperature variation of the elastic constants of cubic elements.Ⅰ. copper[J].Phys Rev,1995,98(4):969.
15 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Mole-cular dynamics with coupling to an external bath [J]. J Chem Phys,1984,81(8):3684.
16 孙民华,牛丽.液态物理概论[M].北京:科学出版社,2013:3.
17 Zhang Shiliang,Qi Li,Gao Wei,et al. Structural analysis and characterization methods in molecular simulation [J]. J Yanshan University,2015(3):213(in Chinese).
张世良,戚力,高伟,等.分子模拟中常用的结构分析与表征方法综述[J]. 燕山大学学报,2015(3):213.
18 Li Bin. The molecular dynamics simulation on the melting point of the nano-meter sized Au clusters [D]. Chongqing:Chongqing University,2008.
李斌. 纳米金原子团簇熔点的分子动力学模拟研究[D].重庆:重庆大学,2008.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[5] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[6] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[7] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[8] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[9] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[10] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[11] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[12] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[13] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[14] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[15] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed