Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 156-160    https://doi.org/10.11896/j.issn.1005-023X.2017.024.031
  材料研究 |
Stellite12钴基合金热循环冲击前后拉伸断裂机理研究
张海燕1,曹 睿1,车洪艳2,刘国辉2,陈剑虹1
1 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050;
2 安泰科技股份有限公司,北京 100086
Investigation of Fracture Mechanism Before and After Thermal Cycling Stellite12 Cobalt-based Alloy with Tensile Tests
ZHANG Haiyan1, CAO Rui1, CHE Hongyan2, LIU Guohui2, CHEN Jianhong1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050;
2 Advanced Technology & Materials Co., Ltd., Beijing 100086
下载:  全 文 ( PDF ) ( 750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对不同缺口的Stellite12钴基合金试样(700 ℃/20 ℃进行不同次数的热循环冲击和未冲击)进行原位拉伸,并结合试验数据的分析以及断口形貌的扫描电镜观察,分析了Stellite12钴基合金热循环冲击前后的拉伸断裂过程和断裂机理。结果发现:热循环冲击后不同半径试样的断裂过程略有不同,热循环冲击后的小圆弧缺口试样在缺口根部产生表面微裂纹,试样边缘及微裂纹两侧产生氧化微孔;原位拉伸时,该试样热冲击过程产生的裂纹先向试样厚度方向扩展,待厚度方向贯通,然后裂纹尖端的基体发生变形、黑相(白相)穿晶开裂、少量沿氧化微孔裂开,试样瞬间发生断裂;而经历热循环冲击后的大圆弧试样表面并未产生明显的裂纹,拉伸加载过程经历大圆弧根部基体变形、黑白相内开裂、边缘氧化微孔张开,试样突然断裂;对于未冲击试样,在加载过程中,试样的断裂过程经历基体变形、黑白相内部开裂,能量聚集到一定程度试样突然断裂。对于未热冲击的三种不同试样其断裂过程基本类似,仅仅是由于小圆弧半径的试样应力集中程度更大,从而使得其断裂应力低于平板以及大圆弧试样。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海燕
曹 睿
车洪艳
刘国辉
陈剑虹
关键词:  钴基合金  原位拉伸  热循环冲击  断裂    
Abstract: By means of in-situ tensile tests of Stellite12 cobalt-based alloy (after the thermal cycling shock at 700 ℃ / 20 ℃ for different times and unshocked) with different notch size, in combination with the analysis of experiment data and SEM observation of fracture, the tensile fracture process and fracture mechanism were investigated before and after thermal cycling shock of Stellite12 cobalt-based alloy. The result of in-situ tensile experiment reveals that after the thermal cycling, the fracture process of specimen with different size notch has a little difference. There were micro surface cracks on the root of small circular notch specimen and many oxydic micropores on the specimen edge and side of the cracks after thermal cycling. When the sample experienced in-situ tensile test, cracks extended in the direction of the thickness of the specimen firstly on the process of thermal shock, to be connected in thickness direction, and then the substrate phase of the crack tip deformation occurred, black phase (white phase) transgranular cracking, oxydic micropores expanding, specimen instantaneously fracturing in the end. But the great circle specimen after thermal cycling shock generated no obvious crack on the surface. During in-situ tensile test, the substrate phase of the crack tip deformation occurred, with black phase (white phase) transgranular cracking, oxydic micropores expanding, specimen instantaneously fracturing. While, the original unshocked specimen experienced deformation, transgranular cracking and fracture when energy accumulating. Three kinds of original specimens are similar to the process of fracture because the stress concentration of the small arc radius specimen is bigger, so as to make its fracture stress lower than the tablet and the great circle sample.
Key words:  cobalt-based alloy    in-situ tensile    thermal cycling shock    fracture
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(51675255);973计划前期研究专项(2014CB660810)
通讯作者:  曹睿:女,1977年生,博士,教授,博士研究生导师,主要研究方向为新材料的焊接性及材料的断裂变形行为 E-mail:caorui@lut.cn   
作者简介:  张海燕:女,1991年生,硕士,主要研究方向为钴基合金的开裂 E-mail:1471316854@qq.com
引用本文:    
张海燕,曹 睿,车洪艳,刘国辉,陈剑虹. Stellite12钴基合金热循环冲击前后拉伸断裂机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 156-160.
ZHANG Haiyan, CAO Rui, CHE Hongyan, LIU Guohui, CHEN Jianhong. Investigation of Fracture Mechanism Before and After Thermal Cycling Stellite12 Cobalt-based Alloy with Tensile Tests. Materials Reports, 2017, 31(24): 156-160.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.031  或          https://www.mater-rep.com/CN/Y2017/V31/I24/156
1 Zhang Zhongjian, Zhao Shengzhi, Peng Wen, et al. Behavior of fatigue crack initiation and propagation of cemented carbides[J]. Chin J Nonferrous Metals,2014,24(12):3031(in Chinese).
张忠健,赵声志,彭文,等. 硬质合金疲劳裂纹的萌生与扩展行为[J]. 中国有色金属学报,2014,24(12):3031.
2 Baik S I, Choi E G, Jun J H, et al. Defect structure induced by iron injection in WC-Co[J]. Scr Mater, 2008,58:614.
3 Abdel-Aal H A, Nouari M, Mansori M E. The effect of thermal property degradation on wear of WC-Co inserts in dry cutting[J]. Wear, 2008,265:1670.
4 Yilbas B S, Arif A F M, Karatas C, et al. Cemented carbide cutting tool: Laster processing and thermal stress analysis[J]. Appl Surf Sci, 2007,253:5544.
5 Jiang W H, Guan H R, Hu Z Q. Development of a heat treatment for a directionally solidified cobalt-base superalloy[J]. Metall Mater Trans A,1999,30:2251.
6 Xu Shengqian, Chen Zhenhua, Zhang Zhongjian, et al. Study on thermo-mechanical-corrosion fatigue behaviour of cemented carbides[J]. Cenmented Carbide, 2013,30(3):161(in Chinese).
徐盛乾,陈振华,张忠健,等. WC-热机械腐蚀疲劳性能的研究[J]. 硬质合金,2013,30(3):161.
7 Zhang Xi, Gao Wei. Research on structure and wear resistance of cobalt-based alloy plasma surfacing welding layer[J]. Hot Working Technol, 2014,43(23):21(in Chinese).
张希,高伟. 钴基合金等离子堆焊层组织及耐磨性研究[J].热加工工艺,2014,43(23):21.
8 Schleinkofer U, Soekel H G. Fatigue of hard metals and cermets[J]. Mater Sci Eng A,1996,209:313.
9 Torres T, Anglada M. Fatigue mechanics of WC-Co cemented carbides[J].Int J Refractory Metals Hard Mater, 2001,19:341.
10Chen Zhenhua, Jang Yong, Chen Ding, et al. Fatigue and fracture of cemented carbides[J]. Chin J Nonferrous Metals,2011,21(10):2394(in Chinese).
陈振华,姜勇,陈鼎,等. 硬质合金的疲劳与断裂[J].中国有色金属学报,2011,21(10):2394.
11Guo Shengda, Zhang Zhengfu. Study on fatigue property of WC-Co cemented carbide[J]. Mater Rev: Rev, 2009,23(6):69(in Chinese).
郭圣达,张正富. WC-Co类硬质合金疲劳特性研究现状[J].材料导报:综述篇,2009,23(6):69.
12Ding Y, Wang C Q, Tian Y, et al. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests[J]. J Alloys Compd, 2007,428:274.
13Oh S H, Legros M, Kiener D, et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal[J]. Nat Mater, 2006,8(2):95.
14Cao Rui, Lin Youzhi, Chen Jianhong, et al. Fracture process and fracture mechanism in fully lamellar TiAl alloys with tensile tests[J]. Chin J Mech Eng, 2008,44(1):40(in Chinese).
曹睿,林有智,陈剑虹,等. 全层状TiAl基合金拉伸试验断裂过程及机理[J]. 机械工程学报,2008,44(1):40.
15Huang Daoyuan. Microstructures, properties, and mechanisms of Co-based cemented carbides under external heat/load conditions[D]. Changsha: Central South University,2010(in Chinese).
黄道远. 热/力作用下钴基硬质合金组织性能变化及相关机理的研究[D].长沙:中南大学,2010.
16Cao Rui, Chen Jianhong, Zhang Ji,et al. Fracture mechanisms of intermetallic TiAl alloys[J]. Chin J Rare Metals, 2004(5):894(in Chinese).
曹睿,陈剑虹,张继,等. 金属间化合物TiAl合金的缺口断裂机制研究[J]. 稀有金属,2004(5):894.
17Jiang Yong. Understanding the fatigue behavior of WC-Co based cemented carbide and stress analysis method[D]. Changsha: Hunan University,2011:17(in Chinese).
姜勇. WC-Co类硬质合金的疲劳性能及应力分析方法的研究[D].长沙: 湖南大学,2011.
[1] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[4] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[5] 周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[8] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[9] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[10] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[11] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[12] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[13] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[14] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[15] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed