Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 39-42    https://doi.org/10.11896/j.issn.1005-023X.2017.018.009
  材料研究 |
凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*
李强1, 魏磊山1, 孙旭东2
1 辽宁工业大学材料科学与工程学院,锦州 121001;
2 东北大学材料科学与工程学院,沈阳 110004
Study on Graphene Oxide/HA Composites Prepared by Gelcasting Technology
LI Qiang1, WEI Leishan1, SUN Xudong2
1 College of Materials Science & Engineering, Liaoning University of Technology, Jinzhou 121001;
2 School of Materials Science & Engineering, Northeastern University, Shenyang 110004
下载:  全 文 ( PDF ) ( 1337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯和纳米羟基磷灰石(HA)粉体为原料,采用凝胶注模成型技术制备了氧化石墨烯/HA复合材料。研究了有机单体、浆料固相含量和石墨烯含量对氧化石墨烯/HA浆料粘度的影响,观察了陶瓷浆料的凝胶固化过程并测量了固化后生坯的密度和抗压强度,分析了氧化石墨烯含量对烧结后复合材料抗弯强度和断裂韧性的影响,观察了试样断口的显微组织。研究结果表明,有机单体含量为15%(质量分数,下同),固相含量为45%,氧化石墨烯含量为1.5%时,氧化石墨烯/HA浆料的粘度最佳,为362.9 mPa·s,浆料的分散性良好,固化后生坯具有较高的密度和抗压强度。随氧化石墨烯含量的增加,复合材料的抗弯强度和断裂韧度均先增加后降低。当氧化石墨烯含量为1.5%时,1 150 ℃烧结样品的抗弯强度为81.5 MPa,断裂韧性为1.52 MPa·m1/2,分别比HA基体提高了151.8%和74.7%,因此添加氧化石墨烯后的HA复合材料的力学性能更佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李强
魏磊山
孙旭东
关键词:  HA复合材料  氧化石墨烯  凝胶注模成型  力学性能  骨修复材料    
Abstract: Graphene oxide (GO) and hydroxyapatite(HA) particles were used as initial materials to prepare GO/HA compo-sites by gelcasting method. The effects of the contents of organic monomer and graphene oxide,the solid content of the slurries on viscosity of GO/HA slurries were studied. The gelcasting processes of the GO/HA slurries were observed and the green density and compressive strength of green compacts were measured. The effects of GO contents on bending strength and fracture toughness of GO/HA composites were analyzed. The microstructure of the fracture surface of the HA composites were observed. The results show that at organic monomer of 15wt%, GO particles of 1.5wt% and the solid content of slurries of 45wt%, the GO/HA slurries have better viscosity of 362.9 mPa·s and good dispersion. The solidified compacts have better density and compressive strength. With the increase of the contents of the GO particles, the bending strength and fracture toughness of the HA composites first increase and then decrease. When the content of GO particles is 1.5wt%, the GO/HA composites sintered at 1 150 ℃ have bending strength of 81.5 MPa and flexural toughness of 1.52 MPa·m1/2, which are 151.8% and 74.7% higher than those of HA matrix. Therefore, the GO/HA composites have better mechanical properties with the addition of GO particles.
Key words:  HA composites    graphene oxide    gelcasting    mechanical property    bone repair material
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51405215);辽宁省自然科学基金-辽宁工业大学联合基金(201602378)
作者简介:  李强:男,1976年生,博士,教授,主要研究方向为生物医用材料 E-mail:liandqiangjz@163.com
引用本文:    
李强, 魏磊山, 孙旭东. 凝胶注模成型技术制备氧化石墨烯/HA复合材料的研究*[J]. 《材料导报》期刊社, 2017, 31(18): 39-42.
LI Qiang, WEI Leishan, SUN Xudong. Study on Graphene Oxide/HA Composites Prepared by Gelcasting Technology. Materials Reports, 2017, 31(18): 39-42.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.009  或          https://www.mater-rep.com/CN/Y2017/V31/I18/39
1 Liu D M, Troczynski T, Tseng W J.Water-based sol-gel synthesis of hydroxyapatite: Process development[J]. Biomaterials, 2001,22(13):1721.
2 Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomater, 2011,7(7):2769.
3 Hutmacher D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000,21(24):2529.
4 Guo X D. Bone tissue engineering: Research progress of techniques to bone defect repair[J]. Int J Biomedical Eng, 2004,27(5):270(in Chinese).
郭晓东. 用组织工程学技术修复骨缺损研究进展[J]. 国际生物医学工程杂志,2004,27(5):270.5 Chen F. The investigation and development of biomedical materials containing hydroxyapatite[J]. China Ceram, 2006,42(4):8(in Chinese).
陈菲. 羟基磷灰石生物医用陶瓷材料的研究与发展[J]. 中国陶瓷, 2006,42(4):8.
6 Bolotin K, Sikes K, Hone J, et al. Temperature-dependent transport in suspended graphene[J]. Phys Rev Lett, 2008,101(9):67.
7 Katsnelson M I. Graphene: Carbon in two dimensions[J]. Mater Today, 2007,10(1):20.
8 Liu Z, Robinson J T, Sun X, et al. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J Am Chem Soc, 2008,130(33):10876.
9 Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res, 2008,1(3):203.
10Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chem Soc Rev, 2012,41(2):666.
11Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled po-lymer nanocomposites[J]. J Mater Chem, 2011,21(10):3301.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed