Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 126-130    https://doi.org/10.11896/j.issn.1005-023X.2017.013.016
  新材料新技术 |
石墨烯基储能材料的增材制造研究进展
何博1, 潘宇飞2, 陆敏1
1 上海工程技术大学材料工程学院,上海 201620;
2 武汉理工大学材料科学与工程学院,武汉 430070
Additive Manufacturing of Graphene-based Energy Storage Materials:A State-of-the-art Review
HE Bo 1, PAN Yufei2, LU Min1
1 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620;
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种具有大比表面积、高电导率和良好的力学性能的二维材料,在高容量和大功率储能器件方面具有广阔的应用前景。然而现有的各种石墨烯电极制造技术无论从技术层面还是在生产率、性能方面都难以满足当前工业应用的需求。石墨烯增材制造(石墨烯3D打印)在复杂三维石墨烯结构的制造方面具有突出的优势和潜力,而且还具有设备简单、成型结构可控性高等优点。关于石墨烯基电极材料的增材制造及应用在近两年内迅速发展。概述了基于增材制造制备石墨烯结构的典型技术——直写成型(DIW)的机理和优点,介绍了基于该技术制备的石墨烯基电极材料在超级电容器和锂离子电池领域的应用,最后对石墨烯基电极材料的增材制造面临的挑战和未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何博
潘宇飞
陆敏
关键词:  石墨烯  增材制造  电极材料  直写成型    
Abstract: Graphene is a two-dimensional material that offers a combination of large specific surface area,excellent electrical conductivity and exceptional mechanical properties,thus can be broadly applied to fabricate high capacity and power energy storage devices. However, current fabrication schemes of graphene electrodes are unsatisfactory for industrial applications from the perspectives of technics, productivity and property. The additive manufacturing of graphene (three-dimensional printing of graphene) possesses outstanding advantages and potential on fabricating complicated three dimensional graphene micro-lattice.Furthermore, this method is characterized by its low cost and excellent structural properties through manipulating the structure from nanometer up to centimeter scale. In recent two years, the additive manufacturing of graphene and its applications have developed rapidly.This paper introduces the mechanism and advantages of the fabrication scheme of graphene based on a typical additive manufacturing technique—direct ink writing (DIW),describes DIW′s application attempts to manufacture graphene-based materials for energy storage systems (lithium-ion batteries, supercapacitors). It also discusses the challenges and future trend of the additive manufacturing of graphene-based electrodes.
Key words:  graphene    additive manufacturing    electrode materials    direct ink writing
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
通讯作者:  陆敏:通讯作者,男,1969年生,教授,主要从事高温合金和钛合金的精密成形及能源材料的研究 E-mail:minlu69@hotmail.com   
作者简介:  何博:男,1974年生,副教授,主要从事高温合金和钛合金的精密成形以及能源材料的研究
引用本文:    
何博, 潘宇飞, 陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 126-130.
HE Bo, PAN Yufei, LU Min. Additive Manufacturing of Graphene-based Energy Storage Materials:A State-of-the-art Review. Materials Reports, 2017, 31(13): 126-130.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.016  或          https://www.mater-rep.com/CN/Y2017/V31/I13/126
1 Stein A. Energy storage: Batteries take charge[J]. Nat Nanotech-nol,2011,6(5):262.
2 Zhu J, Yang D, Yin Z, et al. Graphene and graphene-based mate-rials for energy storage applications[J]. Small,2014,10(17):3480.
3 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater,2012,11(1):19.
4 Peigney A, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon,2001,39(4):507.
5 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
6 Geim A K. Graphene: Status and prospects[J]. Science,2009,324(5934):1530.
7 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
8 Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotechnol,2008,3(9):538.
9 Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Lett,2016,16(6):3448.
10 García-Tuñon E, Barg S, Franco J, et al. Printing in three dimensions with graphene[J]. Adv Mater,2015,27(10):1688.
11 Cesarano J. A review of robocastingtechnology[M]. Cambridge: Cambridge University Press,1998: 542.
12 Lewis J A. Direct ink writing of 3D functional materials[J]. Adv Funct Mater,2006, 16(17):2193.
13 Smay J E, Gratson G M, et al. Directed colloidal assembly of 3D periodic structures[J]. Adv Mater,2002,14(18):1279.
14 Zhu C, Smay J E. Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication[J]. J Rheol,2011,55(3):655.
15 Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324.
16 Le L T, Ervin M H, Qiu H, et al. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide[J]. Electrochem Commun,2011,13(4):355.
17 Bagri A, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nat Chem,2010,2(7):581.
18 Pei S, Cheng H. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210.
19 Barg S, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nat Commun,2014,5:4328.
20 Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nat Commun,2012,3:1241.
21 Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Adv Mater, 2013,25(15):2219.
22 Jakus A E, Secor E B, Rutz A L, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano,2015,9(4):4636.
23 Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nat Commun, DOI:10.1038/ncomms7962.
24 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Adv Mater,2013,25(18):2554.
25 Zhang Q, Zhang F, Medarametla S P, et al. 3D printing of grapheneaerogels[J]. Small,2016, 12(13):1702.
26 Lin Y, Liu F, Casano G, et al. Pristine graphene aerogels by room-temperature freeze gelation.[J]. Adv Mater,2016,28(36):7993.
27 吕勇. 石墨烯及石墨烯/碳纳米管的制备与储能应用[D]. 成都: 西南交通大学,2015:81.
28 Miller J R, Simon P. Electrochemical capacitors for energy management[J]. Science,2008, 321(5889):651.
29 An K H, Kim W S, Park Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes[J]. Adv Mater,2001,13(7):497.
30 Kim S, Koo H, Lee A, et al. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors[J]. Adv Mater,2014,26(30):5108.
31 Gamby J, Taberna P L, Simon P, et al. Studies and characterisa-tions of various activated carbons used for carbon/carbon supercapa-citors[J]. J Power Sources,2001,101(1):109.
32 Chmiola J, Largeot C, Taberna P, et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science,2010,328(5977):480.
33 Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat Nanotech-nol,2010,5(9):651.
34 Zhou Y, Candelaria S L, Liu Q, et al. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability[J]. J Mater Chem A,2014,2(22):8472.
35 Huang Y,et al. An overview of the applications of graphene-based materials in supercapacitors[J]. Small,2012,8(12):1805.
36 Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett,2010,10(12):4863.
37 Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv Energy Mater, DOI: 10.1002/aenm.201300816.
38 Jiang X, Wang X, Dai P, et al. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors[J]. Nano Energy,2015, 16:81.
39 Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424.
40 Wang Y, Tang J, Kong B, et al. Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction[J]. RSC Adv,2015,5(9):6886.
41 Bi H, Yin K, Xie X, et al. Low temperature casting of graphene with high compressive strength[J]. Adv Mater,2012,24(37):5124.
42 Worsley M A, Olson T Y, Lee J R I, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths[J]. J Phys Chem Lett,2011,2(8):921.
43 Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Not Commun,2012,3:1241.
44 Kim J H, Chang W S, Kim D, et al. 3D printing of reduced graphene oxide nanowires[J]. Adv Mater, 2015,27(1):157.
45 Gryglewicz G, Šliwak A, Béguin F. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors[J]. ChemSusChem,2013,6(8):1516.
46 Yu J K A H. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes[J]. Nanotechnology,2012,23(6):65401.
47 Wang G, Wang H, Lu X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv Mater,2014,26(17):2676.
48 Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett,2008,8(8):2277.
49 Cai Dandan. Study on graphene-based high-performance anode material for lithium-ion batteries [D]. Guangzhou: South China University of Technology,2014:136.
蔡丹丹. 基于石墨烯的高性能锂离子电池负极材料的研究[D]. 广州: 华南理工大学,2014:136.
50 Sun K, Wei T, Ahn B Y, et al. 3D printing of interdigitated li-ion microbatteryarchitectures[J]. Adv Mater,2013,25(33):4539.
51 Fu K, Wang Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Adv Mater,2016,28(13):2587.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[8] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[9] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[10] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[11] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[12] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[15] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed