Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 38-43    https://doi.org/10.11896/j.issn.1005-023X.2017.011.005
  材料综述 |
锰基催化剂低温选择催化还原处理NOx的研究现状与展望*
解智博1,2, 宋艳军1,2, 梁金生1,2, 薛刚1,2, 孟军平1,2, 孙剑锋1,2
1 河北工业大学生态环境与信息特种功能材料教育部重点实验室,天津 300130;
2 河北工业大学能源与环保材料研究所,天津 300130
Research Status and Prospects of Low Temperature Selective Catalytic Reduction of NOx by MnOx-based Catalysts
XIE Zhibo1,2, SONG Yanjun1,2, LIANG Jinsheng1,2, XUE Gang1,2, MENG Junping1,2, SUN Jianfeng1,2
1 Key Laboratory of Special Functional Materials for Ecological Environment and Information of Ministry of Education, Hebei University of Technology, Tianjin 300130;
2 Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 1578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锰基催化剂具有较高的催化活性,且成本低,在选择性催化还原(SCR)尾气中的NOx领域具有广阔应用前景。介绍了锰基低温SCR催化剂处理NOx的最新进展。锰基催化剂可分为两类:锰氧化物催化剂和锰基掺杂过渡金属氧化物催化剂。针对锰氧化物催化剂,主要分析了锰的氧化价态、结晶形态、比表面积以及形态学对催化效果的影响;对于锰基掺杂过渡金属氧化物催化剂,重点分析了掺杂物对催化剂的催化能力、催化温度范围、N2的选择性和抗SO2、H2O毒化能力的影响。最后在总结全文的基础上,展望了锰基催化剂的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解智博
宋艳军
梁金生
薛刚
孟军平
孙剑锋
关键词:  选择性催化还原  低温  锰氧化物  脱硝    
Abstract: Manganese(Mn) based catalysts have relatively high catalytic activity and low cost, which has been widely used in selective catalytic reduction (SCR) technology for the removal of NOx from flue gas. The recent progress on the Mn-based catalysts for low-temperature SCR de-NOx is systematically reviewed. On this basis, Mn-based catalysts are divided into two categories: single MnOx catalysts and Mn-based multi-metal oxide catalysts. According to single MnOx catalysts, the effects of Mn oxidation state, crystallization state, specific surface area and morphology on catalytic activity are systematically analyzed. For multi-metal oxide catalysts, the various facts dominated by the components of catalysts are summarized from four aspects, improving de-NOx efficiency, extending operation temperature range, enhancing N2 selectivity, and improving resistance to SO2 and H2O. Finally, the application prospect of manganese based catalysts are predicted according to the above summary.
Key words:  selective catalytic reduction    low temperature    manganese oxide    de-NOx
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  X511  
基金资助: 河北省高校创新团队领军人才培育计划(LJRC020)
通讯作者:  梁金生:通讯作者,男,1964年生,博士,研究员,研究方向为生态环境功能材料 E-mail:liang_jinsheng@sina.com   
作者简介:  解智博:男,1993年生,硕士研究生,研究方向为生态环境功能材料 E-mail:1946565250@qq.com
引用本文:    
解智博, 宋艳军, 梁金生, 薛刚, 孟军平, 孙剑锋. 锰基催化剂低温选择催化还原处理NOx的研究现状与展望*[J]. 《材料导报》期刊社, 2017, 31(11): 38-43.
XIE Zhibo, SONG Yanjun, LIANG Jinsheng, XUE Gang, MENG Junping, SUN Jianfeng. Research Status and Prospects of Low Temperature Selective Catalytic Reduction of NOx by MnOx-based Catalysts. Materials Reports, 2017, 31(11): 38-43.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.005  或          https://www.mater-rep.com/CN/Y2017/V31/I11/38
1 Taylor K C. Nitric oxide catalysis in automotive exhaust systems catalysis reviews[J]. Sci Eng, 1994,25(10):457.
2 杨颺. 烟气脱硫脱硝净化工程技术与设备[M]. 北京:化学工业出版社,2013.
3 Xue G, Zhao Y, Liang J S, et al. Properties of La0.9Sr0.1MnO3 and tourmaline compound catalytic materials for methane combustion [J]. Rare Earth,2014,32(9):837.
4 Li L H, Liu J, Cao Y P. Discussions on denitration technology for exhaust gas of coke oven battery[J]. Fuel Chem Processes,2015(3):42(in Chinese).
李良华,刘杰,曹银平. 焦炉烟气脱硝工艺技术探讨[J]. 燃料与化工,2015(3):42.
5 Liu Z M, Woo S I. Recent advances in catalytic DeNOx science and technology[J]. Catal Rev: Sci Eng,2006,48(1):43.
6 Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx, by ammonia over oxide catalysts: A review[J]. Appl Cataly B Environ,1998, 18(18):1.
7 Zheng Y Y, Wang X. Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[J]. J Funct Mater,2014,45(11):11008(in Chinese).
郑玉婴,汪谢. Mn基低温SCR脱硝催化剂的研究进展[J]. 功能材料,2014,45(11):11008.
8 Busch M, Schmidt W, et al. Effect of preparation of iron-infiltrated activated . carbon catalysts on nitrogen oxide conversion at low temperature[J]. Appl Catal B: Environ,2014,160-161(1):641.
9 Xiao C W, Li T. Research progress of low-temperature SCR denitrification manganese-based catalysts[J]. Clean Coal Technol,2016,22(1):95(in Chinese).
肖翠微,李婷. 低温SCR锰系脱硝催化剂的研究进展[J]. 洁净煤技术,2016,22(1):95.
10 Vuong T H, Radnik J, Kondratenko E, et al. Structure-reactivity relationships in VOx /CexZr1-xO2 catalysts used for low-temperature NH3 -SCR of NO [J]. Appl Catal B: Environ,2016,128:1.
11 Chen P, Rauch D, Weide P, et al. The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts[J]. Catal Sci Technol,2016,6(10):3362.
12 Liu X S, et al. Evolution of copper species on Cu/SAPO-34 SCR ca-talysts upon hydrothermal aging[J]. Catal Today,2016,281:596.
13 Chun G C. Study on reaction activity of SCR denitrification catalyst[J]. Northeast Electric Power Technol,2016,37(1):59(in Chinese).
春国成. SCR脱硝催化剂反应活性探讨[J]. 东北电力技术,2016,37(1):59.
14 Wang Z, Zhou J, Zhu Y, et al. Simultaneous removal of NOx , SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results[J]. Fuel Processing Technol,2007, 88(8):817.
15 Liu T, Wang Y C, Wu R Q, et al. Research advance review for low-temperature NH3-SCR catalysts[J]. J Safety Environ,2012,6(12):36(in Chinese).
刘婷,王延春,吴瑞青,等. 低温NH3-SCR脱硝催化剂研究进展[J]. 安全与环境学报, 2012,6(12):36.
16 Marbán G, Valdéssolás T, Fuertes A B. Mechanism of low tempe-rature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4[J]. Phys Chem Chem Phys, 2003,6(2):138.
17 Jin R B, Liu Y, Wu Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: Acomparative study[J]. Chemosphere,2010,78(9):1160.
18 Zhang Z S, Crocker M, Chen B B, et al. Pt-free, non-thermal plasma-assisted NOx, storage and reduction over M/Ba/Al2O3, (M = Mn, Fe, Co, Ni, Cu) catalysts[J]. Catal Today,2015, 256:115.
19 Park T S, Jeong S K, Hong S H, et al. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low tem-perature[J]. Ind Eng Chem Res,2001,40(21):4491.
20 Yu C L, Wang L S, Huang B C. In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH3 over MnOx supported on multi-walled carbon nanotubes catalysts[J]. Aerosol Air Quality Res,2015,2015(3):1017.
21 Kang M, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catal Lett,2006,106(1):77.
22 Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Cheminform,1994, 3(2-3):173.
23 Tang X L, Hao J M, Xu W G, et al. Low temperature selective ca-talytic reduction of NOx with NH3 over amorphous MnOxcatalysts prepared by three methods[J]. Catal Commun,2007, 8(3):329.
24 Tian W, Yang H S, Fan X Y, et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature [J]. J Hazar-dous Mater,2011,188(1-3):105.
25 Chen Z H, Wang F R, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2011,51(1):202.
26 Liu Z, Yang Y, Zhang S, et al. Selective catalytic reduction of NOx, with NH3, over Mn-Ce mixed oxide catalyst at low temperatures[J]. Catal Today,2013,216:76.
27 Miguel A, Zamudio, Nunzio R, et al. Low temperature NH3 selective catalytic reduction of NOx over substituted MnCr2O4 spinel-oxide catalysts[J]. Ind Eng Chem Res,2011,50(11):417.
28 Qi G, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Appl Catal B: Environ, 2004,51:93.
29 Maria C, Oliver K, Max M, et al. Characterization of Nb-containing MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3 [J]. Phys Chem C,2010, 114(21):9791.
30 Sun P, Guo R T, Liu S M, et al. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A General,2017,531:129.
31 Zhu Y, et al. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun,2017,88:64.
32 Hu H, Zha K, Li H, et al. In situ, DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2, (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx, with NH3[J]. Appl Surf Sci,2016,387:921.
33 Chen T, Guan B, Lin H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal,2014,35(3):294.
34 Hu W S, Gao X, et al. Deactivation mechanism of arsenic and resis-tance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3 [J]. Chem Eng J,2016,293:118.
35 Yan D J, Yu Y, et al. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 catalysts for NO reduction by NH 3 at low temperature [J]. J Fuel Chem Technol,2016,44(2):232.
36 Kong Z, et al. Enhanced activity of MnxW0.05-Ti0.95-xO2-δ, for selective catalytic reduction of NOx, with ammonia by self-propagating high-temperature synthesis[J]. Catal Commun,2015,64:27.
37 Grossale A, Nova I, Tronconi E, et al. The chemistry of the NO/NO2-NH3, “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. J Catal,2008,256(2):312.
38 Wu S, Yao X, Zhang L, et al. Improved low temperature NH3-SCR performance of FeMnTiOx mixed oxide with CTAB-assisted synthesis[J]. Chem Commun,2015,51(16):3470.
39 Jiang B, Yue L, Wu Z. Low-temperature selective catalytic reduction of NO on MnOx/TiO2, prepared by different methods[J]. J Hazardous Mater,2009,162(2-3):1249.
40 Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B,2000,44:217.
41 Liu S J, Yan D J, Huang X M, et al. Influences of doping modification on performance of low-temperature SCR catalyst Mn-Ce/TiO2[J]. Chin J Environ Eng,2016(8):4403 (in Chinese).
刘树军,闫东杰,黄学敏,等. 掺杂改性对Mn-Ce/TiO2低温SCR催化剂性能的影响[J]. 环境工程学报,2016(8):4403.
42 Ji F H. Improvement of the activity of Fe-Ti spinel for the selective catalytic reduction of NO with NH3 at low temperatures[D].Nanjing: Nanjing University of Science & Technology,2016(in Chinese).
戚飞鸿. Fe-Ti尖晶石低温SCR性能的改进[D]. 南京:南京理工大学,2016.
43 Meng J, Liang J, Liu J, et al. Effect of heat treatment on the far-infrared emission spectra and fine structures of black tourmaline[J]. J Nanosci Nanotechnol,2014,14(5):3607.
44 Zhu D, Liang J, Ding Y, et al. Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth[J]. J Am Ceram Soc,2008,91(8):2588.
45 Chen H, et al. Characterization and properties of sepiolite/polyurethane nanocomposites[J]. Mater Sci Eng A,2007,445(6):725.
46 Zuo H Q, Xu D Y, et al. Research progress in palygorskite-supported catalysts for selective catalytic reduction of NOx at low temperature[J]. Chem Ind Eng Prog,2016, 35(10):3164 (in Chinese).
左海清,徐东耀, 等. 凹凸棒石低温SCR脱硝催化剂的研究进展[J]. 化工进展, 2016,35(10):3164.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[3] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[4] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[5] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[6] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[7] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[8] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[9] 王琦胜, 何发旺, 刘振国, 王经伟, 李红玉. 不同聚酯二元醇合成聚氨酯对导电银浆性能的影响[J]. 材料导报, 2024, 38(13): 22110234-6.
[10] 焦纪强, 蒙峻, 罗成, 柴振, 谢文君. Xe23+离子束轰击低温工况下的无氧铜表面解吸性能研究[J]. 材料导报, 2024, 38(1): 22040201-5.
[11] 马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
[12] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[13] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[14] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[15] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed