Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 97-102    https://doi.org/10.11896/j.issn.1005-023X.2017.01.013
  材料综述 |
纳米多孔金属力学性能的若干研究进展
郭林凯,王 磊,章 青
河海大学力学与材料学院,南京 211100
Some Research Developments on Mechanical Property of Nanoporous Metals
GUO Linkai, WANG Lei, ZHANG Qing
College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 1546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米多孔金属是近年来发展起来的一类具有纳米级双连续孔洞和高表面积的新型功能材料,具备如化学性能、力学性能、表面拉曼散射性能等多方面的优异特性,在催化、传感、新能源、生物医学等诸多领域拥有广阔的应用前景。围绕纳米多孔金属的制备、力学性能和尺度特性等,展开细述了相关的研究工作,并重点针对力学性能方面的研究进展,如尺度方程、破坏机理、表面效应和表面应力,以及脱合金制备方法和制备过程中的力学问题进行了讨论,并对将来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭林凯
王 磊
章 青
关键词:  纳米多孔金属  力学性能  脱合金  尺度方程  表面应力    
Abstract: In recent years, due to their superior chemical, mechanical and surface Raman scattering property, nanoporous metals, which are new types of functional materials with ultrahigh specific surface area and bi-continuous network at nano-scale, have been widely used in many fields such as catalysis, sensing, new energy and bio-medical engineering. In this paper, detailed review is carried out on some research works related to preparation, mechanical property and scale-sensitive performance of nanoporous metals, with an emphasis on scaling law, failure mechanism, surface effects and dealloying process, and some future directions are also prospected.
Key words:  nanoporous metals    mechanical properties    dealloying    scaling equations    surface stress
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TP273  
基金资助: 国家自然科学基金(11472098);教育部“新世纪优秀人才”支持计划(NCET-13-0773)
作者简介:  郭林凯:男,1992年生,硕士研究生,主要研究方向为纳米多孔金属的力学性能 E-mail:glkarthur@163.com 王磊:通讯作者,男,1980年生,博士,副教授,主要研究方向为微纳米力学与计算力学 E-mail:wangL@hhu.edu.cn
引用本文:    
郭林凯, 王 磊, 章 青. 纳米多孔金属力学性能的若干研究进展[J]. 材料导报, 2017, 31(1): 97-102.
GUO Linkai, WANG Lei, ZHANG Qing. Some Research Developments on Mechanical Property of Nanoporous Metals. Materials Reports, 2017, 31(1): 97-102.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.013  或          https://www.mater-rep.com/CN/Y2017/V31/I1/97
1 Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: “Ancient Technology”/advanced material[J]. Adv Mater,2004,16(21):1897.
2 Dixon M C, Daniel T A, Hieda M, et al. Preparation, structure, and optical properties of nanoporous gold thin films [J]. Langmuir, 2007,23(5):2414.
3 Erlrbacher J, Seshadri R. Hard materials with tunable porosity[J]. MRE Bull,2009,34(8):561.
4 Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors[J]. J Optoelectronics Adv Mater,2016,6(3-4):312.
5 Wittstock A, Biener J, Bumer M. Nanoporous gold: A new material for catalytic and sensor applications[J]. Phys Chem Chem Phys,2010,12(40):12919.
6 Kramer D, Vidwanath R N, Weissmuller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers[J]. Nano Lett,2004.4(5):793.
7 Biener J, Wittstock A, Zepeda-Ruiz L A, et al. Surface-chemistry-driven actuation in nanoporous gold[J]. Nature Mater,2009,8(1):47.
8 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electronchemical actuators[J]. Nano Lett,2010,10(1):187.
9 Chen X, Si C, Wang Y, et al. Multicomponent platinum-free nano-porous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction[J]. Nano Res,2016,9(6):1.
10 Qiao Y, Li C M. Nanostructured catalysts in fuel cells[J]. J Mater Chem,2011,21(12):4027.
11 Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling coupling of methanol at low temperature[J]. Science,2010,327(5963):319.
12 Xu C, Su J, Xu X, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc,2007,129(1):42.
13 Kucheyev S O, Hayes J R, Biener J, et al. Surface-enhanced Raman scattering on nanoporous Au[J]. Appl Phys Lett,2006,89(5):053102.
14 Qian L H, Yan X Q, Fujita T, et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements[J]. Appl Phys Lett,2007,90(15):153120.
15 Schade L, Franzka S, Biener M, et al. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold[J]. Appl Surf Sci,2016,374:19.
16 Volkmar Z, Birte J, Christian S, et al. Gold catalysts: Nanoporous gold foams[J]. Angew Chem,2006,45(48):8241.
17 Fujita T, Okada H, Koyama K, et al. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields[J]. Phys Rev Lett,2008,101(16):3958.
18 Zhang L, Chang H, Hirata A, et al. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions[J]. Acs Nano,2013,7(5):4595.
19 Sieradzki K, Rinaldi A, Friesen C, et al. Length scales in crystal plasticity[J]. Acta Mater,2006,54(17):4533.
20 Liu Z, Searson P C. Single nanoporous gold nanowire sensors[J]. J Phys Chem B,2006,110(9):4318.
21 Shin T Y, Yoo S H, Park S. Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation[J]. Chem Mater,2012,20(17):5682.
22 Cheng F, Bandaru N M, Ellis A V, et al. Electrochemical fabrication of nanoporous gold[J]. J Mater Chem,2012,22(7):3952.
23 Arzt E, Dehm G, Gumbsch P, et al. Interface controlled plasticity in metals: Dispersion hardening and thin film deformation[J]. Prog Mater Sci,2001,46(3-4):283.
24 Parida S, Kramer D, Volkert C A, et al. Volume change during the formation of nanoporous gold by dealloying[J]. Phys Rev Lett,2006,97(3):035504.
25 Biener J, Hodge A M, Hamza A V. Microscopic failure behavior of nanoporous gold[J]. Appl Phys Lett,2005,87(12):121908.
26 Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical dehavior of nanoporous Au[J]. Nano Lett,2006,6(10):2379.
27 Parthasarathi A, Polan N W. Stress corrosion of Cu-Zn and Cu-Zn-Ni: The role of delloying[J]. Metall Mater Trans A,1982,13(11):2027.
28 Pickering H W, Swann P R. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking[J]. Corrosion,1963,19(11):373.
29 Forty A J. Corrosion micromorphology of noble metal alloys and depletion gilding[J]. Nature,1979,282(5739):597.
30 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in delloying[J]. Nature,2001,410(6827):450.
31 Swann P R. Mechanism of corrosion tunneling with special reference to Cu3Au[J]. Corrosion,1969,25(4):147.
32 Sieradzki K, Newman R C. Micro- and nano-porous merallic structures: USA, 338260-7[P].1990.
33 Opprnheim I C, Trevor D J, Chidsey C E, et al. In situ scanning tunneling microscopy of corrosion of silver-gold alloys[J]. Science,1991,254(5032):687.
34 Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc,2003,125(26):7772.
35 Ding Y, Chen M, Erlebacher J. Metallic mesoporous nanocompo-sites for electrocatalysis[J]. J Am Chem Soc,2004,126(22):6876.
36 Jin H J, Weissmüller J. A material with electrically tunable strength and flow stress[J]. Science,2011,332(6034):1179.
37 Lee D, Wei X, Chen X, et al. Microfabrication and mechanical pro-perties of nanoporous gold at the nanoscale[J]. Scripta Mater,2007,56(5):437.
38 Sun Y, Kucera K P, Burger S A, et al. Microstructure, stability and thermomenchanical behavior of crack-free thin films of nanoporous gold[J]. Scripta Mater,2008,58(11):1018.
39 Zhu J, Seker E, Bart-Smith H, et al. Mitigation of tensile failure in released nanoporous metal micro structures via thermal treatment[J]. Appl Phys Lett,2006,89(13):4773.
40 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of annealing prior to dealloying on the mechanical properties of nanoporous gold microbeams[J]. Acta Mater,2008,56(3):324.
41 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures[J]. Acta Mater,2007,55(14):4593.
42 Haque M A, Saif M T. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study[J]. Proceedings of the National Academy of Sciences,2004,101(17):6335.
43 Feng X Q, Li J Y, Yu S W. A simple method for calculating interaction of numerous microcracks andits applications[J]. Int J Solids Structures,2003,40(2):447.
44 Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying[J]. Scripta Mater,2007,56(11):1003.
45 Hieda M, Garcia R, Dixon M, et al. Ultrasensitive quartz crystal microbalance with porous gold electrodes[J]. Appl Phys Lett,2004,84(4):628.
46 Lührs L, Soyarslan C, Markmann J, et al. Elastic and plastic Poisson′s ratios of nanoporous gold[J]. Scripta Mater,2016,110:65.
47 Biener J, Hamza A V, Hodge A M. Deformation behavior of nano-porous metals[C]// Micro and Nano Mechanical Testing of Materials and Devices. USA:Springer Science+Business Media,2008:11.
48 Hodge A M, Doucette R T, Biener M M, et al. Ag effects on the elastic modulus value of nanoporous Au foams[J]. J Mater Res,2009,24(4):1600.
49 Biener J, Hodge A M, Hamza A V, et al. Nanoporous Au: A high yield strength material[J]. J Appl Phys,2005,97(2):024301.
50 Yuan F, Wu X. Scaling laws and deformation mechanisms of nano-porous copper under adiabatic uniaxial strain compression[J]. Aip Adv,2014,4(12):312.
51 Ng B N D, Stukowski A, Mameka N, et al. Anomalous compliance and early yielding of nanoporous gold[J]. Acta Mater,2015,93:144.
52 Lee D, Wei X, Zhao M, et al. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold[J]. Modelling Simulation Mater Sci Eng,2006,15(1):181.
53 Gupta G, Thorp J C, Mara N A, et al. Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1-x[J]. J Appl Phys,2012,112(9):094320.
54 Li R, Sieradzki K. Ductile-brittle transition in random Au[J]. Phys Rev Lett,1992,68(8):1168.
55 Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Mater,2007,55(4):1343.
56 Farkas D, Caro A, Bringa E, et al. Mechanical response of nanoporous gold[J]. Acta Mater,2013,61(9):3249.
57 Jin H J, Kumanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency[J]. Acta Mater,2009,57(9):2665.
58 Briot N J, Kennerknecht T. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimeter-scale tension and compression testing[J]. Philosophical Magazine,2014,94(8):847.
59 Liu R, Antoniou A. A relationship between the geometrical structure of a nanoporous metal foam and its modulus[J]. Acta Mater,2013,61(7):2390.
60 Gibson L J, Ashby M F. Cellular solid: Structure and properties[M]. England: Cambridge University Press, 1999:27.
61 Wu T Y, Wang X, Huang J C, et al. Characterization and functional applications of nanoporous Ag foams prepared by chemical dealloying[J]. Metall Mater Trans B,2015,46(5):1.
62 Volkert C A, Lilleodden E T, et al. Approaching the theoretical in nanoporous Au[J]. Appl Phys Lett,2006,89(6):061920.
63 Weissmüller J, Newman R C, Jin H J. Nanoporous metals by alloy corrosion: Formation and mechanical properties[J]. MRS Bull,2009,34(8):577.
64 Huber N, Viswanath R N, et al. Scaling laws of nano-porous metals under uniaxial compression[J]. Acta Mater,2014,67(4):252.
65 Kahng B, Batrouni G G, Redner S, et al. Electrical breakdown in a fuse network with random, continuously distributed breaking strengths[J]. Phys Rev B Condensed Matter,1988,37(13):7625.
66 Mccullough K Y G, Fleck N A, Ashby M F. Uniaxial stress-strain behavior of aluminum alloy foams[J]. Acta Mater,1999,47(8):2323.
67 Amsterdam E, Onck P R, et al. Fracture and microstructure of open cell aluminum foam[J]. J Mater Sci,2005,40(22):5813.
68 Weissmüller J, Viswanath R N, Kramer D, et al. Charge-induced reversible strain in a metal[J]. Science, 2003, 300(5617):312.
69 Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes[J]. Electrochimica Acta,2008,53(6):2757.
70 Cheng C, Ngan A H W. Charge-induced reversible bending in anodic porous alumina-aluminum composites[J]. Appl Phys Lett,2013,102(21):213119.
71 Ebron V H, Yang Z W, Seyer D J, et al. Fuel-powered artificial muscles[J]. Science,2006,311(5767):1580.
72 Zhang J, Bai Q, Zhang Z. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance[J]. Nanoscale,2016,8(13):7287.
73 Bai Q, Si C, Zhang J, et al. Sign inversion of surface stress-charge response of bulk nanoporous nickel actuators with different surface states[J]. Phys Chem Chem Phys,2016,18(29):19798.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed