Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 25040080-8    https://doi.org/10.11896/cldb.25040080
  高分子与聚合物基复合材料 |
铜掺杂生物活性玻璃/壳聚糖季铵盐复合水凝胶的构建及多网络协同增强机制
张芮1,2, 马晓丽1,2, 仝凤莲1,2,*
1 新疆医科大学药学院,乌鲁木齐 830054
2 新疆天然药物活性成分与药物释放技术重点实验室,乌鲁木齐 830054
Construction of Copper-doped Bioactive Glass/Quaternized Chitosan Composite Hydrogels and Their Multi-network Synergistic Enhancement Mechanism
ZHANG Rui1,2, MA Xiaoli1,2, TONG Fenglian1,2,*
1 College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
2 Key Laboratory of Active Ingredients and Drug Release Technology for Natural Medicines in Xinjiang, Urumqi 830054, China
下载:  全 文 ( PDF ) ( 32944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 皮肤修复领域科研人员近期关注生物活性玻璃(BGs)与壳聚糖季铵盐(QCS)水凝胶协同作用。针对BGs单体易致组织损伤及纯QCS力学性能不足的问题,本工作开发了一种通过将掺铜生物活性玻璃(Cu-BGs)与QCS协同集成的多网络水凝胶系统。采用溶胶-凝胶法结合模板诱导技术制备铜掺杂BGs(Cu-BGs),并通过冻融循环法构建聚乙烯醇(PVA)/QCS/Cu-BGs(PQB-Cu)多网络水凝胶。实验表明:4%(质量分数)掺杂时Cu-BGs呈球形形貌,实现了Cu的均匀负载,XRD和BET证实其具有介孔特征的无定形结构。PQB-0.5%Cu水凝胶通过静电相互作用与动态硼酸酯键形成三维网络,SEM呈现贯通的多孔结构;材料的自愈合性能可实现无痛换药;粘附强度为(13.98±1.77) kPa,高于商业敷料Greenplast的5 kPa,溶胀率高达300%,断裂伸长率为(316.10±41.10)%,远超人体皮肤需求的17%~27%。体外离子释放实验中,PQB-0.5%Cu展现出“初期快速释放+后期缓慢释放”的Cu离子可控释放能力。Cu-BGs与QCS复合水凝胶协同促进人脐静脉内皮细胞(HUVECs)迁移,24 h划痕愈合率提升1.26倍。本工作制备的PQB-Cu多网络水凝胶具有较好的力学性能,能促进细胞迁移,为开发具有优异力学性能和促进创面愈合功能的创面敷料提供了创新方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张芮
马晓丽
仝凤莲
关键词:  生物活性玻璃  水凝胶  多网络  铜离子    
Abstract: In recent years, researchers in the field of skin wound healing have focused on the synergistic interaction between bioactive glass (BGs) and chitosan quaternary ammonium salt (QCS)-based hydrogels. Conventional BGs monomers often induce tissue irritation, while QCS hydrogels exhibit inadequate mechanical strength. To address these limitations, a multi-network hydrogel system by synergistically integrating copper-doped bioactive glasses (Cu-BGs) with QCS was developed in this work. Cu-BGs was synthesized using a sol-gel method coupled with a templating strategy. Subsequently, polyvinyl alcohol (PVA)/QCS/Cu-BGs (PQB-Cu) multi-network hydrogels were fabricated via a freeze-thaw cycling process. The 4wt% Cu-BGs exhibited a spherical morphology with a homogeneous distribution of copper (Cu) throughout the glass matrix. X-ray diffraction (XRD) and Barrett-Emmett-Teller (BET) analyses confirmed its mesoporous nature and amorphous structure. The PQB-0.5%Cu hydrogel formed a three-dimensional network structure through electrostatic interactions and dynamic borate ester bonds, demonstrating interconnected porosity (SEM), self-healing properties that enable painless dressing changes, and superior adhesion strength (13.98±1.77 kPa vs.5 kPa for commercial Greenplast). Additionally, the hydrogel demonstrated a swelling ratio of up to 300%, and its elongation at break was (316.10±41.10)%, markedly exceeding the human skin requirement of 17% to 27%. In vitro studies revealed a biphasic Cuions release profile (initial burst followed by sustained diffusion), while Cu-BGs and QCS synergy enhanced human umbilical vein endothelial cell (HUVEC) migration by 1.26-fold in 24-hour scratch assays. The PQB-Cu multi-network hydrogel developed in this work exhibited favorable mechanical properties and effectively promoted cell migration, offering a promising strategy for the design of wound dressings with excellent mechanical strength and therapeutic potential for wound healing.
Key words:  bioactive glass    hydrogel    multi-network    copper ions
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  R313  
基金资助: 新疆维吾尔自治区自然科学基金(2023D01C49);新疆天池英才青年博士项目
通讯作者:  *仝凤莲,新疆医科大学药学院副教授、硕士研究生导师,目前主要从事生物医用材料、柔性电子器件等方面的研究。tongfl@xjmu.edu.cn   
作者简介:  张芮,新疆医科大学药学院硕士研究生,主要从事生物医药材料制备及创面修复的研究。
引用本文:    
张芮, 马晓丽, 仝凤莲. 铜掺杂生物活性玻璃/壳聚糖季铵盐复合水凝胶的构建及多网络协同增强机制[J]. 材料导报, 2025, 39(24): 25040080-8.
ZHANG Rui, MA Xiaoli, TONG Fenglian. Construction of Copper-doped Bioactive Glass/Quaternized Chitosan Composite Hydrogels and Their Multi-network Synergistic Enhancement Mechanism. Materials Reports, 2025, 39(24): 25040080-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25040080  或          https://www.mater-rep.com/CN/Y2025/V39/I24/25040080
1 Dong X Y, Xiang H, Li J J, et al. Bioactive Materials, 2025, 47, 1.
2 Zhang D J, Mei L, Hao Y P, et al. Biomaterials Research, 2023, 27(1), 56.
3 Scharschmidt C T, Segre A J. The Journal of Clinical Investigation, 2025, 135(3), 1.
4 Kang Y, Liu K, Chen Z B, et al. Journal of Controlled Release, 2024, 370, 210.
5 Cummins M L, Wechsler S, Delmonte G, et al. Military Medical Research, 2024, 11(1), 44.
6 Wang F Y, Chen Y X, Chai L, et al. Biomaterials Advances, 2025, 170, 214227.
7 Zhang X Y, Liang Y P, Huang S F, et al. Advances in Colloid and Interface Science, 2024, 332, 103267.
8 Qu M Y, Xu W Z, Zhou X W, et al. Advanced Functional Materials, 2024, 34(26), 2314500.
9 Zhang Y, Li M, Wang Y C, et al. Bioactive Materials, 2023, 26, 323.
10 Chang H, Tian P F, Hao L Z, et al. Chemical Engineering Journal, 2024, 481, 148768.
11 Anand A, Kaková H, Hájovská Z, et al. Journal of Materials Chemistry B, 2024, 12, 1875.
12 Liao M H, Zhu S L, Guo A J, et al. Composites Part B:Engineering, 2023, 254, 110582.
13 Wang Z T, Dai Q Y, Luo H T, et al. Bioactive Materials, 2024, 40, 460.
14 Yang Y Y, Ma Y, Wang J F, et al. Carbohydrate Polymers, 2023, 316, 121083.
15 Su K Z, Deng D Y, Wu X X, et al. Chemical Engineering Journal, 2024, 479, 147646.
16 Mottaghitalab F, Yazdi M K, Saeb M R, et al. Chemical Engineering Journal, 2024, 492, 152288.
17 Hua S M, Zhang Y J, Zhu Y F, et al. Carbohydrate Polymers, 2024, 343, 122426.
18 Zhang K, Liu Y, Shi X W, et al. International Journal of Biological Macromolecules, 2023, 242, 125192.
19 Rahman Khan M M, Hasan Rumon M M. Gels, 2025, 11(2), 88.
20 Ding L, Chen L Y, Hu L C, et al. Carbohydrate Polymers, 2021, 255, 117331.
21 Guo S, Ren Y K, Chang R, et al. ACS Applied Materials Interfaces, 2022, 14(30), 34455.
22 Liu Y L, Mao J, Guo Z Y, et al. International Journal of Biological Macromolecules, 2022, 220, 211.
23 Zhao L, Ren Z J, Liu X, et al. ACS Applied Materials & Interfaces, 2021, 13(9), 11344.
24 Liu Y J, Zhao R Z, Li S H, et al. ACS Applied Materials & Interfaces, 2023, 15(17), 21640.
25 Wang Z H, Xu J, Wu X Q, et al. Advanced Functional Materials, 2024, 34(48), 2408479.
26 Jiang Z M, Qin S G, Wang W Y, et al. Smart Materials in Medicine, 2024, 5(2), 207.
27 Feng W J, Wang Z K. Advanced Science, 2023, 10(28), 2303326.
28 Minsart M, Van Vlierberghe S, Dubruel P, et al. Burns & Trauma, 2022, 10, 1.
29 Yao W D, Song Z L, Ma X D, et al. Journal of Nanobiotechnology, 2024, 22(1), 34.
30 Abd-Elsalam H-A H, Refaeey O A, Waked K G, et al. Journal of Cluster Science, 2024, 35(6), 2019.
31 Jiang Y C, Li G Y, Wang H N, et al. Macromolecular Bioscience, 2022, 22(5), 2100443.
32 Iranmanesh P, Gowdini M, Khademi A, et al. Journal of Materials Research and Technology, 2021, 14, 2853.
33 Zhong G F, Qiu M Y, Zhang J B, et al. International Journal of Biological Macromolecules, 2023, 234, 123693.
34 Tan Y J, Xu C L, Liu Y, et al. Carbohydrate Polymers, 2024, 337, 122147.
35 KudŁacik-Kramarczyk S, Drabczyk A, GŁab M, et al. Materials Science & Engineering C, 2021, 123, 111977.
36 Alasvan N, Behnamghader A, Milan P B, et al. Materials Today Chemistry, 2023, 29, 101465.
[1] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[2] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[3] 董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
[4] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[5] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[6] 谢梦恬, 马雨龙, 孙一榕, 孙海, 许维国, 王国良, 丁建勋. 生物活性水凝胶通过调控细胞行为促进皮肤慢性创面愈合[J]. 材料导报, 2025, 39(5): 24120195-14.
[7] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[8] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[9] 张振豪, 赵晨曦, 朱飞宇, 唐欣, 盛洁, 杨方源. 高效保水与种子萌发:木质素海藻酸钠凝胶球的合成及其土壤改良作用[J]. 材料导报, 2025, 39(23): 24100194-8.
[10] 朱秋月, 崔硕, 徐涛, 张正健. 基于纤维素纳米晶体的刺激响应水凝胶的研究进展[J]. 材料导报, 2025, 39(22): 24070161-10.
[11] 姚博星, 马钊, 杨宽, 邱林, 蔺子凡, 王书磊. 医疗用途导电水凝胶的研究进展[J]. 材料导报, 2025, 39(21): 25020012-11.
[12] 刘姝含, 丁晟, 侯可心, 程雅丽, 张绍辉, 李钒, 杨焜. 可注射止血水凝胶的设计原理及粘附能力增强策略[J]. 材料导报, 2025, 39(17): 24080189-12.
[13] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[14] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[15] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed