Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24080189-12    https://doi.org/10.11896/cldb.24080189
  高分子与聚合物基复合材料 |
可注射止血水凝胶的设计原理及粘附能力增强策略
刘姝含1,2, 丁晟1, 侯可心1, 程雅丽1, 张绍辉1, 李钒1,*, 杨焜1,*
1 中国人民解放军军事科学院系统工程研究院,天津 300161
2 天津科技大学生物工程学院工业微生物教育部重点实验室,天津 300457
Design Principle and Adhesion Enhancing Strategies of Injectable Hemostatic Hydrogel
LIU Shuhan1,2, DING Sheng1, HOU Kexin1, CHENG Yali1, ZHANG Shaohui1, LI Fan1,*, YANG Kun1,*
1 Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
2 MOE Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
下载:  全 文 ( PDF ) ( 49756KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多数可注射水凝胶或是由于缺乏机械强度导致内聚力失效,或是由于组织与生物材料界面相互作用不足而导致无法持续粘结。理想的水凝胶材料应具有适宜的内聚强度以模拟天然组织的刚度和弹性,同时需具备适宜的粘结强度,以实现伤口的物理封堵并抵抗一定强度的机械运动。水凝胶的粘附性能实际由粘结和内聚共同决定,在适宜的平衡范围内,单一增加内聚力或粘结力都可增强粘附效果,但超出平衡范围,内聚与粘结二者将是此消彼长的对立制约关系。掌握可注射止血水凝胶的设计原理及粘附能力增强策略,是止血水凝胶基础研究和应用转化的关键。本文介绍了高强可注射水凝胶的设计原理,并从内聚和粘结两个维度举例分析了粘附能力增强的设计策略和方法,最后对可注射水凝胶设计过程中的注意事项以及未来的发展方向进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘姝含
丁晟
侯可心
程雅丽
张绍辉
李钒
杨焜
关键词:  可注射  止血水凝胶  粘附能力  内聚强度  粘结强度    
Abstract: Most injectable hydrogels either fail to cohere due to a lack of mechanical strength or have insufficient bonding capacity to sustain adhesion due to insufficient interfacial interaction between tissue and biomaterial. Ideal hydrogel materials should have optimal cohesive strength to mimic the stiffness and elasticity of natural tissues, as well as appropriate bond strength to seal wounds with physical methods and to resist mechanical movement with some intensity. Indeed, the adhesion performance of hydrogel is determined by the bonding and cohesion together;within the appropriate equilibrium, a single increase in cohesion or adhesion can produce adhesion enhancement, but once the balance is destroyed, the two will be opposing constraints on each other. Learning the design principles and adhesion enhancement strategies of injectable hemostatic hydrogels is the key to the research and technology transformation of hemostatic hydrogels. This paper introduces the design principles of high-strength injectable hydrogels and analyzes the design strategies and methods of adhesion enhancement from the dimensions of cohesion and bonding with examples. Finally, we summarize and look forward to the precautions in the process of designing injectable hydrogels as well as the future development direction.
Key words:  injectable    hemostatic hydrogel    adhesion capacity    cohesive strength    bond strength
发布日期:  2025-08-28
ZTFLH:  R318.08  
基金资助: 系统工程研究院自主项目基金(ZZB2023C7010)
通讯作者:  *李钒,博士,中国人民解放军军事科学院卫勤保障技术研究所高级工程师。主要从事止血包扎材料,碳纳米材料在荧光标记、光能转化、光催化等方面的应用基础研究。vanadium_1981@163.com
杨焜,博士,军事科学院系统工程研究院工程师。主要从事止血材料、荧光标记等方面的研究。yangkuntianda@163.com   
作者简介:  刘姝含,天津科技大学生物工程学院硕士研究生,在杨焜工程师指导下开展生物医用水凝胶相关领域研究。
引用本文:    
刘姝含, 丁晟, 侯可心, 程雅丽, 张绍辉, 李钒, 杨焜. 可注射止血水凝胶的设计原理及粘附能力增强策略[J]. 材料导报, 2025, 39(17): 24080189-12.
LIU Shuhan, DING Sheng, HOU Kexin, CHENG Yali, ZHANG Shaohui, LI Fan, YANG Kun. Design Principle and Adhesion Enhancing Strategies of Injectable Hemostatic Hydrogel. Materials Reports, 2025, 39(17): 24080189-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080189  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24080189
1 Park B, Shin J H, Ok J, et al. Science, 2022, 376(6593), 624.
2 Hua M, Wu S, Ma Y, et al. Nature, 2021, 590(7847), 594.
3 El Halawany M, Khashaba M, AbouGhaly M H H, et al. International Journal of Pharmaceutics, 2024, 659(25), 124219.
4 Wang Y, Pan P, Liang H, et al. Biomacromolecules, 2024, 25(2), 819.
5 Zhao X, Huang Y, Li Z, et al. Advanced Materials, 2024, 36(15), 2308701.
6 Chen Z, Yao J, Zhao J, et al. International Journal of Biological Macromolecules, 2023, 225, 1235.
7 Kamedani M, Okawa M, Madhavikutty A S, et al. Biomacromolecules, 2024, 25(3), 1790.
8 Chen Z, Zhao J, Wu H, et al. Carbohydrate Polymers, 2023, 303(1), 120434.
9 Du Y, Chen X, Li L, et al. Carbohydrate Polymers, 2023, 318(15), 121049.
10 Li M, Dai Q, Zhu S, et al. Chemical Engineering Journal, 2023, 469(1), 143758.
11 Zhang F X, Chien M H, Fan Q R, et al. Advanced Functional Materials, 2024, 34(32), 2316540.
12 Kim B J, Oh D X, Kim S, et al. Biomacromolecules, 2014, 15(5), 1579.
13 von Fraunhofer J A. International Journal of Dentistry, 2012, 2012(1), 951324.
14 Volinsky A A, Moody N R, Gerberich W W. Acta Materialia, 2002, 50(3), 441.
15 Zhao X, Chen X, Yuk H, et al. Chemical Reviews, 2021, 121(8), 4309.
16 Kuang X, Arıcan M O, Zhou T, et al. Accounts of Materials Research, 2023, 4(2), 101.
17 Rose S, Prevoteau A, Elzière P, et al. Nature, 2014, 505(7483), 382.
18 Yuk H, Zhang T, Lin S, et al. Nature Materials, 2016, 15(2), 190.
19 Song R, Wang X, Johnson M, et al. Advanced Functional Materials, 2024, 34(23), 2313322.
20 Cao J, Wu P, Cheng Q, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24095.
21 Steiner T. Angewandte Chemie International Edition, 2002, 41(1), 48.
22 Ma H, Axi Y, Lu Y, et al. International Journal of Biological Macromo-lecules, 2024, 265, 130780.
23 Dong L, Han Z, Zhang H, et al. International Journal of Biological Macromolecules, 2022, 208(31), 530.
24 Liu S, Jiang N, Chi Y, et al. ACS Biomaterials Science & Engineering, 2022, 8(9), 3754.
25 Li X, Sun S, Feng X, et al. Journal of Biomaterials Science: Polymer Edition, 2023, 34(2), 184.
26 Weian W, Yunxin Y, Ziyan W, et al. Biomaterials Science, 2024, 12(6), 1405.
27 Shin H H, Ryu J H. Biomimetics, 2023, 8(7), 542.
28 Xiong M, Chen Y, Hu H J, et al. Carbohydrate Polymers, 2024, 341, 122348.
29 Guo S, Ren Y, Chang R, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 34455.
30 Su X, Xie W, Wang P, et al. Materials Horizons, 2021, 8(8), 2199.
31 Bai S, Zhang X, Cai P, et al. Nanoscale Horizons, 2019, 4(6), 1333.
32 Gu H, Li H, Wei L, et al. Regenerative Biomaterials, 2023, 10, rbad018.
33 Shi J, Wang D, Wang H, et al. Acta Biomaterialia, 2022, 145, 106.
34 Ni P, Ye S, Xiong S, et al. Journal of Materials Chemistry B, 2023, 11(23), 5207.
35 Lee D, Hwang H, Kim J S, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 20933.
36 Chen G, Yu Y, Wu X, et al. Advanced Functional Materials, 2018, 28(33), 1801386.
37 Liu Y, Li K, Tian J, et al. Nature Communications, 2023, 14(1), 5145.
38 Cui C, Fan C, Wu Y, et al. Advanced Materials, 2019, 31(49), 1905761.
39 Peng X, Li Y, Li T, et al. Advanced Science, 2022, 9(31), 2203890.
40 Braccini I, Pérez S. Biomacromolecules, 2001, 2(4), 1089.
41 Peng X, Xu X, Deng Y, et al. Advanced Functional Materials, 2021, 31(33), 2102583.
42 Wei R, Chen T, Wang Y, et al. Macromolecular Bioscience, 2021, 21(5), e2000367.
43 Wang W, Liu Y, Liu Y, et al. Giant, 2023, 16, 100197.
44 Yang Y, He G, Pan Z, et al. Advanced Materials, 2024, 36(33), 2404811.
45 Singh G, Nayal A, Malhotra S, et al. Carbohydrate Polymers, 2020, 247(1), 116757.
46 Jorgensen W L, Severance D L. Journal of the American Chemical Society, 1990, 112(12), 4768.
47 Deng J H, Luo J, Mao Y L, et al. Science Advances, 2020, 6(2), eaax9976.
48 Fan H, Wang J, Tao Z, et al. Nature Communications, 2019, 10(1), 5127.
49 Ma J C, Dougherty D A. Chemical Reviews, 1997, 97(5), 1303.
50 Ni Z, Yu H, Wang L, et al. Advanced Healthcare Materials, 2022, 11(1), 2101421.
51 Suneetha M, Rao K M, Han S S. ACS Omega, 2019, 4(7), 12647.
52 Fan X, Wang S, Fang Y, et al. Materials Science and Engineering:C, 2020, 109, 110649.
53 Song F, Kong Y, Shao C, et al. Acta Biomaterialia, 2021, 136, 170.
54 Huang W, Cheng S, Wang X, et al. Advanced Functional Materials, 2021, 31(22), 2009189.
55 Teng L, Shao Z, Bai Q, et al. Advanced Functional Materials, 2021, 31(43), 2105628.
56 Xu W, Nan Y, Jin Y, et al. Chemistry of Materials, 2022, 34(19), 8740.
57 Marco-Dufort B, Tibbitt M W. Materials Today Chemistry, 2019, 12, 16.
58 Zou W, Dong J, Luo Y, et al. Advanced Materials, 2017, 29(14), 1606100.
59 Jin Y, Yu C, Denman R J, et al. Chemical Society Reviews, 2013, 42(16), 6634.
60 Liang Y, Li M, Yang Y, et al. ACS Nano, 2022, 16(2), 3194.
61 Ding X, Li G, Zhang P, et al. Advanced Functional Materials, 2021, 31(19), 2011230.
62 Xu X, Xia X, Zhang K, et al. Science Translational Medicine, 2020, 12(558), eaba8014.
63 Ryu J H, Lee Y, Kong W H, et al. Biomacromolecules, 2011, 12(7), 2653.
64 Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. Angewandte Chemie International Edition, 2019, 58(3), 696.
65 Zhang F X, Liu P, Ding W, et al. Biomaterials, 2021, 278, 121169.
66 Chen K, Wu Z, Liu Y, et al. Advanced Functional Materials, 2022, 32(12), 2109687.
67 Wu Y D, Hong D, Hao W J, et al. Chinese Journal of Biomedical Engineering, 2021, 40(5), 590(in Chinese).
吴益栋, 洪丹, 郝文娟, 等. 中国生物医学工程学报, 2021, 40 (5), 590.
68 Geng H, Dai Q, Sun H, et al. ACS Applied Bio Materials, 2020, 3(2), 1258.
69 Cheng H, Yu Q, Chen Q, et al. Biomaterials Science, 2023, 11(3), 931.
70 Yuan Y, Shen S, Fan D. Biomaterials, 2021, 276, 120838.
71 Rafieian S, Mirzadeh H, Mahdavi H, et al. Science and Engineering of Composite Materials, 2019, 26(1), 154.
72 Huang T D, Cao Y Y, Jiang Y J, et al. Chinese Journal of Analytical Chemistry, 2023, 51(6), 982(in Chinese).
黄童黛, 曹玉玉, 江云静, 等. 分析化学, 2023, 51 (6), 982.
73 Wang Q, Gao Z. Journal of the Mechanics and Physics of Solids, 2016, 94, 127.
74 Yang C M, Lee J, Lee S Y, et al. Gels, 2022, 8(10), 650.
75 Tian Y, Guan P, Wen C, et al. ACS Applied Materials & Interfaces, 2022, 14(49), 54488.
76 Gao L T, Chen Y M, Aziz Y, et al. Carbohydrate Polymers, 2024, 330(15), 121812.
77 Li J, Suo Z, Vlassak J J. Journal of Materials Chemistry B, 2014, 2(39), 6708.
78 Wang W, Narain R, Zeng H. Frontiers in Chemistry, 2018, 6, 497.
79 Cao Y C, Liu X K, Dang Q F, et al. Periodical of Ocean University of China, 2024, 54(3), 60(in Chinese).
曹亚婵, 刘晓坤, 党奇峰, 等. 中国海洋大学学报(自然科学版), 2024, 54(3), 60.
80 Zou C Y, Lei X X, Hu J J, et al. Bioactive Materials, 2022, 16, 388.
81 Lei X X, Hu J J, Zou C Y, et al. Bioactive Materials, 2023, 27, 461.
82 Cui C, Liu W. Progress in Polymer Science, 2021, 116, 101388.
83 Zhou H X, Pang X. Chemical Reviews, 2018, 118(4), 1691.
84 Roosen-Runge F, Heck B S, Zhang F, et al. Journal of Physical Chemistry B, 2013, 117(18), 5777.
[1] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[2] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[3] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[4] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[5] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[6] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[7] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[8] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[9] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed