Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110187-7    https://doi.org/10.11896/cldb.24110187
  无机非金属及其复合材料 |
固体颜料对装饰超高性能混凝土基本性能和着色效果的影响
张国林1, 刘建忠1,2,3,*, 夏薇薇1, 尹锐1, 申健1, 韩方玉2,3, 吉旭平2,3,*
1 重庆大学材料科学与工程学院,重庆 400044
2 江苏苏博特新材料股份有限公司,南京 211103
3 重大基础设施工程材料全国重点实验室,南京 211103
Effects of Solid Pigments on the Fundamental Properties and Coloring Performance of Decorative Ultra-high Performance Concrete
ZHANG Guolin1, LIU Jianzhong1,2,3,*, XIA Weiwei1, YIN Rui1, SHEN Jian1, HAN Fangyu3, JI Xuping2,3,*
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
3 State Key Laboratory of Engineering Materials for Major Infrastructure, Nanjing 211103, China
下载:  全 文 ( PDF ) ( 37204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体颜料在赋予装饰超高性能混凝土(UHPC)丰富色彩的同时也会影响其基本性能。为此,选取了氧化铁黄(Y)、氧化铁绿(G)和氧化铁蓝(B)三种固体颜料,探究了其在不同掺量下对装饰UHPC基本性能及着色效果的影响规律。结果表明,纯无机颜料Y对装饰UHPC的基本性能影响较小。B与G颜料因含有酞菁会不同程度地影响UHPC工作性能,其中B掺量达5%时已无法成型,G对UHPC工作性能的影响则介于Y与B之间。力学性能方面,B掺量2%组和G掺量5%组的抗压强度皆降低,分别为基准组的62.3%和66.5%,且孔隙率相比于基准组分别增大了96.6%和114.7%,这也导致对应的毛细吸水系数显著增大。另外,各颜料在较低掺量(0.5%,质量分数)下即可显著改变装饰UHPC色彩,其中以Y的着色效果最为显著,但掺量超过0.5%(质量分数)后,色彩变化幅度减小。颜料种类不改变装饰UHPC的早期色彩演变规律,7 d可认为是评估装饰UHPC色彩是否满足设计预期的最早龄期。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国林
刘建忠
夏薇薇
尹锐
申健
韩方玉
吉旭平
关键词:  装饰UHPC  固体颜料  基本性能  着色效果  微结构    
Abstract: Solid pigments not only endow rich colors to decorative ultra-high performance concrete(UHPC) but also influence its fundamental properties. In this work, three solid pigments—yellow iron oxide (Y), green iron oxide (G), and blue iron oxide (B)—were selected to investigate their effects on the fundamental properties and coloration of decorative UHPC at various dosages. The results indicate that Y, as a pure inorganic pigment, has minimal impact on the fundamental properties of UHPC. In contrast, the B and G pigments, which contain phthalocyanine, affect the workability of UHPC in different degrees. The paste became unworkable when the content of B reached 5%, and the influence of G on workability is between that of Y and B. In terms of mechanical properties, the compressive strengths of the groups with 2% B and 5% G content are reduced to 62.3% and 66.5% of the control group, respectively. Their porosity increased by 96.6% and 114.7%, respectively compared to the control group, which also led to a significant increase in the capillary water absorption coefficient. In addition, each pigment significantly changes the color of decorative UHPC at very low content (0.5wt%), Among them, Y has the most significant coloring effect, but the color change amplitude decreases when the content exceeds 0.5wt%. The type of pigment does not change the early color evolution law of decorative UHPC, and 7 d can be considered the earliest age to evaluate whether decorative UHPC color meets the design expectation or not.
Key words:  decorative UHPC    solid pigment    fundamental property    coloring performance    microstructure
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52293432);江苏省基础研究计划自然科学基金-前沿引领技术基础研究专项(BK20222004);中交科技研发项目(K22096-2);工程咨询项目(8512008540)
通讯作者:  *刘建忠,博士,江苏苏博特新材料股份有限公司研究员级高工,重庆大学材料科学与工程学院博士研究生导师。2012年参加工作以来,一直从事高与超高性能混凝土方面的研究工作。ljz@cnjsjk.cn;吉旭平,硕士,江苏苏博特新材料股份有限公司工程师。2021年参加工作以来,一直从事超高性能混凝土材料方面的研究工作。jixuping@cnjsjk.cn   
作者简介:  张国林,重庆大学材料科学与工程学院硕士研究生,在刘建忠老师的指导下进行研究。目前主要研究领域为超高性能混凝土材料。
引用本文:    
张国林, 刘建忠, 夏薇薇, 尹锐, 申健, 韩方玉, 吉旭平. 固体颜料对装饰超高性能混凝土基本性能和着色效果的影响[J]. 材料导报, 2025, 39(22): 24110187-7.
ZHANG Guolin, LIU Jianzhong, XIA Weiwei, YIN Rui, SHEN Jian, HAN Fangyu, JI Xuping. Effects of Solid Pigments on the Fundamental Properties and Coloring Performance of Decorative Ultra-high Performance Concrete. Materials Reports, 2025, 39(22): 24110187-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110187  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110187
1 Liu F N, Lyu L C, Lin J H, et al. Materials Reports, 2023, 37(Z1), 22070056(in Chinese).
刘方宁, 吕梁胜, 林建华, 等. 材料导报, 2023, 37(Z1), 22070056.
2 Deng S W, Yan B F, Shen L, et al. Construction and Building Materials, 2024, 446, 137994.
3 Judite Miranda, Jónatas Valença, Eduardo Júlio. Structural Concrete, 2019, 20(4), 1391.
4 Herdis A. Heinemann. Case Studies in Construction Materials, 2017, 7, 207.
5 Huang H, Long R, Tong S H, et al. Construction and Building Materials, 2023, 382, 131345.
6 Lee H S, Lee J Y, Yu M Y. Cement and Concrete Research, 2005, 35, 703.
7 Jang H S K, Kang H S, So S Y. KSCE Journal of Civil Engineering, 2014, 18(4), 1125.
8 Jin Y, Xu J B, Li Y L, et al. Additive Manufacturing, 2022, 57, 102965.
9 Noor A. Ibraheem, Mokhtar M. Hasan, Rafiqul Z. Khan, et al. ARPN Journal of Science and Technology, 2012, 2(3), 265.
10 López A, Tobes J M, Giaccio G, et al. Cement and Concrete Composites. 2009, 31, 754.
11 Hatami L, Jamshidi M. International Journal of Civil Engineering, 2017, 15, 727.
12 Yang L, Liu G J, Gao D Y, et al. Construction and Building Materials, 2021, 272, 121945.
13 Wang X L, Chang H L, Li S W, et al. Journal of Building Engineering, 2024, 95, 110262.
14 Zhutovsky S, Hooton D R. Construction and Building Materials, 2019, 215, 918.
15 Hatami L, Jamshidi M. Journal of Building Engineering, 2021, 35, 102006.
16 Ji X P, Han F Y, Pan T H, et al. Construction and Building Materials, 2024, 444, 137851.
17 Lv D J, Li X J, Zhang X, et al. Dyes and Pigments, 2020, 180, 108449.
18 Edgar Chuta, Johan Colin, Jena Jeong. Journal of Building Engineering, 2020, 32, 101716.
19 Sahil Garg, Kameshwar Singh Nim, Sudhir Misra, et al. Construction and Building Materials, 2019, 207, 722.
20 Lekner J, Michael C. Dorf. Applied Optics, 1988, 27(7), 1278.
21 Doris Strehlein, Peter Schießl. Journal of Advanced Concrete Technology, 2008, 6(3), 409.
[1] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[2] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[3] 杜宗泽, 王刚, 朱轲, 夏钰东, 谢峰, 欧凯, 倪宇翔. 仿生微结构调控风阻研究进展[J]. 材料导报, 2025, 39(4): 23090080-8.
[4] 陈苗苗, 赵鸣, 崔承昊, 刘卓承, 陈华, 杜永胜, 邓磊波. Ge对新型低温烧结简单组分ZnBiMnO压敏陶瓷的影响[J]. 材料导报, 2025, 39(18): 24080180-5.
[5] 任才富, 王栋民, 房奎圳, 王吉祥, 李晓慧, 张信龙. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J]. 材料导报, 2025, 39(18): 24090006-8.
[6] 张会琪, 徐宇, 缪妙, 刘紫琛, 刘贤哲, 黄爱萍, 罗坚义. 柔性电容式压力传感器:聚合物介电材料、微结构及应用[J]. 材料导报, 2025, 39(14): 24050081-11.
[7] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[10] 欧阳江秀, 鲁艳军, 卓永就, 钟慧敏, 徐锦豪. 疏水性微结构聚合物的高效注塑成形制备[J]. 材料导报, 2024, 38(15): 23020203-6.
[11] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[12] 左斌, 尹洪峰, 刘云, 辛亚楼, 刘宇驰, 袁蝴蝶. 水泥回转窑过渡带用尖晶石-方镁石-铝酸钙耐火材料的制备[J]. 材料导报, 2024, 38(12): 23010150-5.
[13] 宋欣, 贾文涛, 李健, 周相龙, 马天宇. 2∶17型钐钴永磁材料的相变机制研究新进展[J]. 材料导报, 2023, 37(3): 22120078-9.
[14] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[15] 陈该青, 刘凯, 徐幸, 吴瑛, 肖勇. 泡沫Ni/In-48Sn复合焊料钎焊Al合金接头显微结构及力学性能研究[J]. 材料导报, 2023, 37(17): 22100141-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed