Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22030065-10    https://doi.org/10.11896/cldb.22030065
  无机非金属及其复合材料 |
二次电子产额影响因素的研究进展
邓晨晖*, 韩立, 王岩, 高召顺, 牛耕
中国科学院电工研究所,北京 100190
Progress in the Study of Factors Influencing the Secondary Electron Yield
DENG Chenhui*, HAN Li, WANG Yan, GAO Zhaoshun, NIU Geng
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
下载:  全 文 ( PDF ) ( 10951KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二次电子发射现象在显微分析、电子倍增、航空航天、高压输电和粒子加速器等中广泛存在,因此开展二次电子的相关研究具有重要的应用价值。本文首先介绍了二次电子的相关背景;随后从入射电子与材料相互作用到最终二次电子产额测量的全过程出发,将影响二次电子产额的因素分成了入射电子性质、材料属性、样品表面状态、测试条件与方法四个大类,并对其进行了文献调研和综合分析;最后总结了目前研究取得的进展,梳理了相关规律,指出了存在的不足之处,探讨了该领域可能的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓晨晖
韩立
王岩
高召顺
牛耕
关键词:  二次电子  二次电子产额  入射电子性质  样品性质  测试条件    
Abstract: The phenomenon of secondary electron emission widely exists in microanalysis, electron multiplication, aerospace, high-voltage power transmission, particle accelerators and so on. Hence, research on it is necessary. This paper firstly introduces the background knowledge about secondary electrons. Secondly, considering the whole process from electron-material interactions to the measurements of secondary electron yield, this paper classifies the factors affecting the secondary electron yield into four broad categories:nature of the incident electrons, properties of the sample, surface condition of the sample, test conditions and methods. Founded on that, this paper conducts a literature review and a comprehensive analysis. Finally, this paper summarizes the progress of the current research, sorts out the relevant laws, points out the shortco-mings, and discusses the possible development trend in the field.
Key words:  secondary electron    secondary electron yield    properties of the incident electrons    properties of the sample    experimental condition
发布日期:  2023-12-19
ZTFLH:  O046  
基金资助: 中国科学院电工研究所科研基金(E155440101)
通讯作者:  *邓晨晖,2014年6月毕业于河北工业大学,获得工学学士学位,2021年6月从中国科学院大学取得工学博士学位。目前在中国科学院电工研究所从事博士后研究,主要研究方向为电子束的应用。dengch@mail.iee.ac.cn   
引用本文:    
邓晨晖, 韩立, 王岩, 高召顺, 牛耕. 二次电子产额影响因素的研究进展[J]. 材料导报, 2023, 37(24): 22030065-10.
DENG Chenhui, HAN Li, WANG Yan, GAO Zhaoshun, NIU Geng. Progress in the Study of Factors Influencing the Secondary Electron Yield. Materials Reports, 2023, 37(24): 22030065-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030065  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22030065
1 Liu X Q. Cathode electronics, Science Press, China, 1980, pp. 387(in Chinese).
刘学悫. 阴极电子学, 科学出版社, 1980, pp. 387.
2 Campbell S. Proceedings of the Royal Society of London, 1899, 64, 377.
3 Lin Z L, Wang X J. Cathode Electronics, National Defense Industry Press, China, 2013, pp. 218 (in Chinese) .
林祖伦, 王小菊. 阴极电子学, 国防工业出版社, 2013, pp. 218.
4 Agemura T, Iwai H, Sekiguchi T. Japanese Journal of Applied Physics, 2018, 57(4), 046701.
5 Bouclier R, Capeans M, Dominik W, et al. IEEE Transactions on Nuclear Science, 1997, 44(3), 646.
6 Hejna J. Journal of Microscopy, 2010, 232(2), 276.
7 Guo L, Xin L, Li L, et al. Nuclear Instruments and Methods in Physics Research Section A, DOI:10. 1016/j. nima. 2021. 165369.
8 Zhu X, Guo J, Cao W, et al. Journal of Applied Physics, 2020, 128(6), 065102.
9 Shu X T, Hong W C, Graaf H. Materials, 2016, 9(12), 1017.
10 Vaz R, May P W, Fox N A, et al. Journal of Instrumentation, 2015, 10(3), 03004.
11 Wu Q. Measurements and studies of secondary electron emission of diamond amplified photocathode. Ph. D. Thesis, Indiana University, USA, 2008.
12 He T L. Preliminary physical and principle studies of diamond amplified electron gun. Ph. D. Thesis, University of Science and Technology of China, China, 2019( in Chinese).
何天龙. 金刚石放大电子枪物理及原理性实验研究. 博士学位论文, 中国科学技术大学, 2019.
13 Kishek R A, Lau Y Y, Ang L K, et al. Physics of Plasmas, 1998, 5(5), 2120.
14 Balcon N, Payan D, Belhaj M, et al. IEEE Transaction on Plasma Science, 2012, 40(2), 282.
15 Li Y, Wang D, Yu M, et al. IEEE Transactions on Electron Devices, 2018, 65(10), 4592.
16 Xie G B, Bai H W, Miao G H, et al. Nanomaterials, 2021, 11(12), 3282.
17 Anderson R A. Journal of Applied Physics, 1980, 51(3), 1414.
18 Anderson R B, Getty W D, Brake M L, et al. Review of Scientific Instruments, 2001, 72(7), 3095.
19 Li Y W, Ren C Y, Kong F, et al. High Voltage Apparatus, 2019, 55(5), 1 (in Chinese).
李杨威, 任成燕, 孔飞, 等. 高压电器, 2019, 55(5), 1.
20 Chvyreva A, Pemen A. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5), 2274.
21 Li S T, Nie Y J, Min D M, et al. Transactions of China Electrotechnical Society, 2017, 32(8), 9 (in Chinese).
李盛涛, 聂永杰, 闵道敏, 等. 电工技术学报, 2017, 32(8), 9.
22 Wang J. Study on surface treatments and secondary electron characteristics of vacuum related materials for next generation accelerator. Ph. D. Thesis, University of Science and Technology of China, China, 2017 (in Chinese).
王洁. 新一代加速器真空室结构材料表面处理及二次电子特性研究. 博士学位论文, 中国科学技术大学, 2017.
23 He J L. Investigation of low energy metal ion beam irradiation on secondary electron emission characteristics of metal material surface. Ph. D. Thesis, China Academy of Engineering Physics, China, 2020 (in Chinese).
何佳龙. 低能金属离子束辐照对金属材料表面二次电子发射特性的影响研究. 博士学位论文, 中国工程物理研究院, 2020.
24 Flanagan J W, Ohmi K, Fukuma H, et al. Physical Review Letters, 2005, 94(5), 054801.
25 Cimino R, Demma T. International Journal of Modern Physics A, 2014, 29(17), 1430023.
26 Basovic M. Secondary electron emission from plasma processed accelerating cavity grade niobium. Ph. D. Thesis, Old Dominion University, Serbia, 2016.
27 Bruining H. Physics and applications of secondary electron emission, Pergamon Press LTD. , London, 1962, pp. 85.
28 Zeng R G. Study of interaction of particles with solids by quantum and classical methods. Ph. D. Thesis, University of Science and Technology of China, China, 2013(in Chinese).
曾荣光. 量子与经典方法研究粒子与固体的相互作用. 博士学位论文, 中国科学技术大, 2013.
29 Shih A, Hor C. IEEE Transactions on Electron Devices, 1993, 40(4), 824.
30 Weng M, Hu T C, Cao M, et al. Acta Physica Sinica, 2015, 64(15), 456 (in Chinese).
翁明, 胡天存, 曹猛, 等. 物理学报, 2015, 64(15), 456.
31 Chang T H, Zheng J R. Acta Physica Sinica, 2012, 61(24), 149 (in Chinese).
常天海, 郑俊荣. 物理学报, 2012, 61(24), 149.
32 Dapor M, Ciappa M, Fichtner W. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2010, 9(2), 023001.
33 Kumar P, Watts C, Svimonishvili T, et al. IEEE Transactions on Plasma Science, 2009, 37(8), 1537.
34 Belhaj M, Paulmier T, Rodgers D. In:Spacecraft Charging Technology Conference (13th SCTC). Pasadena, United States, 2014.
35 Balcon N, Payan D, Belhaj M, et al. IEEE Transactions on Plasma Science, 2012, 40(2), 282.
36 Belhaj M, Tondu T, Inguimbert V, et al. Journal of Physics D:Applied Physics, 2010, 43(13), 135303.
37 Melchinger A, Hofmann S. Journal of Applied Physics, 1995, 78(10), 6224.
38 Blaise G, Pesty F, Garoche P. Journal of Applied Physics, 2009, 105(3), 1.
39 Nishiwaki M, Kato S. Vacuum, 2009, 84(5), 743.
40 Cimino R, Commisso M, Grosso D R, et al. Physical Review Letters, 2012, 109(6), 64801.
41 Larciprete R, Grosso D R, Commisso M, et al. Physical Review Special Topics. Accelerators and Beams, 2013, 16(1), 011002.
42 Scheuerlein C, Taborelli M. Journal of Vacuum Science & Technology A, 2002, 20(1), 93.
43 Roediger P, Wanzenboeck H D, Hochleitner G, et al. Journal of Vacuum Science & Technology B, 2009, 27(6), 2711.
44 Yakshinskiy B V, Wasielewski R, Loginova E, et al. In:11th International Workshop on Desorption Induced by Electronic Transitions. Berlin, Germany, 2007.
45 Chauvet C, Polack F, Silly M G, et al. Journal of Synchrotron Radiation, 2011, 18(5), 761.
46 Zhou F, Wang R, Liang X M, et al. Journal of Beijing University of Technology, 2020, 46(10), 1128 (in Chinese).
周帆, 王蕊, 梁轩铭, 等. 北京工业大学学报, 2020, 46(10), 1128.
47 Mckay K G. Advances in Electronics & Electron Physics, 1948, 1, 65.
48 Tolias P. Plasma Physics and Controlled Fusion, 2014, 56(12), 123002.
49 Walker C G H, Gomati M M, Assa’D A M D, et al. Scanning, 2008, 30(5), 365.
50 Qi S K, Wang X X, Luo J R, et al. High Power Laser and Particle Beams, 2014, 26(12), 164(in Chinese).
漆世锴, 王小霞, 罗积润, 等. 强激光与粒子束, 2014, 26(12), 164.
51 Hopman H J, Verhoeven J. Applied Surface Science, 1999, 150(1), 1.
52 Dekker A J. Solid State Physics, 1958, 6, 251.
53 Yater J E, Shih A. Journal of Applied Physics, 2000, 87(11), 8103.
54 Thome T, Braga D, Blaise G. Journal of Applied Physics, 2004, 95(5), 2619.
55 Belhaj M, Paulmier T, Hanna R, et al. Nuclear Instruments & Methods in Physics Research, 2014, 320(1), 46.
56 Weng M, Cao M, Zhao H J, et al. Review of Scientific Instruments, 2014, 85(3), 036108.
57 Hopman H J, Alberda H, Attema I, et al. Journal of Electron Spectroscopy & Related Phenomena, 2003, 131, 51.
58 Whetten N R, Laponsky A. Journal of Applied Physics, 1957, 28(4), 515.
59 Guo J J, Wang D, Wen K L, et al. Ceramics International, 2020, 46(6), 8352.
60 Wen K L. Study on the secondary electron characteristics of thin film materials based on atomic layer deposition. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2020(in Chinese).
温凯乐. 基于原子层沉积的薄膜材料的二次电子发射特性研究. 博士学位论文, 中国科学院大学, 2020.
61 Cao W W, Wang B, Yang Y, et al. Ceramics International, 2020, 47(7), 9866.
62 Wang D. A study on secondary electron emission characteristics and mo-dulation of space materials. Ph. D. Thesis, Xi’an Jiaotong University, China, 2019(in Chinese).
王丹. 空间材料表面二次电子发射特性及其调控研究. 博士学位论文, 西安交通大学, 2019.
63 Zhu X P, Guo J J, Li X X, et al. Applied Sciences, 2021, 11(11), 4801.
64 Zhang Q, Wang J, Zhou F, et al. Materials Research Bulletin, 2016, 96(1), 35.
65 Li J, Hu W, Wang K, et al. Materials, 2018, 11(11), 2104.
66 Deng J, Zeng B Q. Journal of University of Electronic Science and Technology of China, 2015, 44(3), 375.
67 Min D M. Investigation into charge trapping transport properties and mechanisms in polymeric insulating materials. Ph. D. Thesis, Xi’an Jiaotong University, China, 2013(in Chinese).
闵道敏. 聚合物介质材料电荷捕获输运特性和机理的研究. 博士学位论文, 西安交通大学, 2013.
68 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
69 Luo J, Tian P, Pan C T, et al. ACS Nano, 2011, 5(2), 1047.
70 Montero I, Aguilera L, Davila M E, et al. Applied Surface Science, 2014, 291(1), 74.
71 Cao M, Zhang X S, Liu W H, et al. Diamond & Related Materials, 2017, 73, 199.
72 Zhang H F, Cui Q Y, Hao J J. Vaccum Electronics, 2021(5), 37 (in Chinese).
张海丰, 崔倩月, 郝俊杰. 真空电子技术, 2021(5), 37.
73 Luo J, Warner J H, Feng C, et al. Applied Physics Letters, 2010, 96(21), 213113.
74 Alam M K, Yaghoobi P, Chang M, et al. Applied Physics Letters, 2010, 97(26), 261902.
75 Zhang Y X. Research on the application of carbon-based coatings in accelerators. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
张宇心. 碳系薄膜在加速器中的应用研究. 博士学位论文, 中国科学技术大学, 2020.
76 Larciprete R, Grosso D R, Commisso M, et al. Physical Review Research, 2020, 2(3), 032030.
77 Wang B, Gan K Y, Mei J, et al. Journal of Functional Materials, 2008(1), 158 (in Chinese).
王兵, 甘孔银, 梅军, 等. 功能材料, 2008(1), 158.
78 Pivi M, King F K, Kirby R E, et al. Journal of Applied Physics, 2008, 104(10), 104904.
79 Cui W Z, Li Y, Yang J, et al. Chinese Physics B, 2016, 25(6), 573.
80 Feng G B, Cui W Z, Li J, et al. Journal of Xi’an Jiaotong University, 2017, 51(4), 128 (in Chinese).
封国宝, 崔万照, 李军, 等. 西安交通大学学报, 2017, 51(4), 128.
81 Bai C J, Feng G B, Cui W Z, et al. Acta Physica Sinica, 2018, 67(3), 249 (in Chinese).
白春江, 封国宝, 崔万照, 等. 物理学报, 2018, 67(3), 249.
82 Ye M, He Y N, Wang R, et al. Acta Physica Sinica, 2014, 63(14), 354 (in Chinese).
叶鸣, 贺永宁, 王瑞, 等. 物理学报, 2014, 63(14), 354.
83 Wang Z W, Ye M, Chen L, et al. High Power Laser and Particle Beams, 2016, 28(12), 56 (in Chinese).
王泽卫, 叶鸣, 陈亮, 等. 强激光与粒子束, 2016, 28(12), 56.
84 Ye M, He Y N, Hu S G, et al. Journal of Applied Physics, 2013, 113(7), 074904.
85 Ye M, Wang D, He Y N. Journal of Applied Physics, 2017, 121(12), 124901.
86 Liu L, Feng G B, Chen B D, et al. AIP Advances, 2021, 11(2), 025332.
87 Swanson C, Kaganovich I D. Journal of Applied Physics, 2016, 120(21), 213302.
88 Swanson C, Kaganovich I D. Journal of Applied Physics, 2017, 122(3), 1.
89 Swanson C, Kaganovich I D. Journal of Applied Physics, 2018, 123(2), 023302.
90 Jin X L, Wu X M, Zhuge L J, et al. Materials Reports, 2021, 35(7), 7176(in Chinese).
金雪莲, 吴雪梅, 诸葛兰剑, 等. 材料导报, 2021, 35(7), 7176.
91 Kim W S, Yi W, Yu S, et al. Applied Physics Letters, 2002, 81(6), 1098.
92 Sato T, Kobayashi S, Michizono S, et al. Applied Surface Science, 1999, 144(45), 324.
93 Pinto P C, Calatroni S, Neupert H, et al. Vacuum, 2013, 98(4), 29.
94 Zhang N, Cao M, Cui W Z, et al. Chinese Journal of Vaccum Science and Technology, 2014, 34(5), 554(in Chinese).
张娜, 曹猛, 崔万照, 等. 真空科学与技术学报, 2014, 34(5), 554.
95 He J, Yang J, Miao G H, et al. High Power Laser and Particle Beams, 2020, 32(3), 73(in Chinese).
何鋆, 杨晶, 苗光辉, 等. 强激光与粒子束, 2020, 32(3), 73.
96 Belhaj M, Guibert N, Guerch K, et al. In:Spacecraft Charging Techno-logy Conference (13thSCTC). Pasadena, United States, 2014.
97 Khan M I, Lubner S D, Ogletree D F, et al. Journal of Applied Physics, 2018, 124(19), 195104.
98 Thomson C D. Measurements of the secondary electron emission properties of insulators. Ph. D. Thesis, Utah State University, USA, 2005.
99 Hoffmann R, Dennison J R. IEEE Transactions on Plasma Science, 2012, 40(2), 298.
100 Zhang X S, Cao M, Weng M, et al. Chinese Space Science and Techno-logy, 2017, 37(2), 39 (in Chinese).
张秀生, 曹猛, 翁明, 等. 中国空间科学技术, 2017, 37(2), 39.
101 Song B P, Shen W W, Mu H B, et al. IEEE Transactions on Plasma Science, 2013, 41(8), 2117.
[1] 张毅, 韩昭, 白园蕊, 鲍艳, 马建中, 叶楠. 基于聚苯乙烯模板的金纳米碗结构的制备及二次电子发射特性[J]. 材料导报, 2023, 37(7): 21060137-5.
[2] 金雪莲, 吴雪梅, 诸葛兰剑, 金成刚. 抑制二次电子发射方法的研究[J]. 材料导报, 2021, 35(7): 7176-7182.
[3] 白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed