Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20120209-11    https://doi.org/10.11896/cldb.20120209
  高分子与聚合物基复合材料 |
多维感知柔性电子皮肤的发展现状
孔霞, 宋浩冉, 宋佳音, 管宗上, 郭宗庆, 路广
山东科技大学化学与生物工程学院,山东 青岛 266590
Development Status on the Multi-dimensional Sensing Flexible Electronic Skin
KONG Xia, SONG Haoran, SONG Jiayin, GUAN Zongshang, GUO Zongqing, LU Guang
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
下载:  全 文 ( PDF ) ( 7783KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子皮肤是一种致力于模拟并超越人类皮肤功能的可穿戴柔性仿生传感器,可模仿人体皮肤对外界环境的感知,在医疗健康、智能机器人等领域有着广阔的应用前景,是当今重要的前沿研究方向之一。本文简单介绍了电子皮肤的发展历史,并详细论述了在制备过程中材料、结构、基底、器件选择等方面的最新研究进展,概括了电子皮肤应具备的可拉伸性、可自愈性、自供电性、集成性和生物相容性等特性,列举了基于应变传感、温度传感、湿度传感和代谢物传感的电子皮肤,以及其在健康检测、触觉、人机交互、生物医疗、心率脉搏检测等方面做出的巨大贡献。通过举例分析电子皮肤在诸多方面的研究成果,说明电子皮肤对人类健康和社会进步做出了巨大贡献。电子皮肤的蓬勃兴起必将推动科学发展,造福人类。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔霞
宋浩冉
宋佳音
管宗上
郭宗庆
路广
关键词:  电子皮肤  材料选择  特性应用  多维感知    
Abstract: Electronic skin, a wearable flexible bionic sensor dedicated to simulating and surpassing the perception of the human skin, has been an important research direction due to its wide application in medical health and intelligent robots. In this article, the developments of electronic skin are briefly introduced, and the latest research of electronic skin including materials, structures, substrates and device selections during the preparation is discussed in detail. The characteristics such as stretchability, self-healing, self-powering, integration and biocompatibility of electronic skin are summarized, and the electronic skins based on strain sensing, temperature sensing, humidity sensing and metabolite sensing are also expounded. At last, the great contributions of electronic skin in health detection, touch, human-computer interaction, biomedicine, heart rate and pulse detection are summarized. Through listing a large number of important research achievements, it is obvious that the electronic skin has made a great contribution to human health and social progress. The vigorous development of electronic skin will certainly promote the progress of scientific development and benefit mankind.
Key words:  electronic skin    material selection    characteristic application    multi-dimensional awareness
发布日期:  2022-06-09
ZTFLH:  O649.3  
基金资助: 国家自然科学基金(22001150);山东省自然科学基金(ZR2020QB029;ZR2020QB030)
通讯作者:  kongxia_chem@sdust.edu.cn; luguang@sdust.edu.cn   
作者简介:  孔霞,山东科技大学讲师,2012年于潍坊学院获工学学士学位,2015年于济南大学获理学硕士学位,2018年于中国石油大学(华东)获理学博士学位,主要从事半导体材料设计合成及光电传感、催化性质等方面的研究,主持国家自然科学基金1项,山东省自然科学基金1项,自主创新科研计划项目1项,指导山东省大学生创新创业项目1项。近年来,在有机光电子材料与器件领域发表论文40余篇,包括Chem. Sci.,Chem. Comm.,ACS Applied Materials & Interface,Mater. Chem. Front.,Dyes Pigments,Org. Electron.等期刊。
路广,山东科技大学讲师,2012年于济南大学获得理学学士学位,2014—2019年于北京科技大学硕博连读,于2019年获得理学博士学位,主要从事卟啉和酞菁基功能材料、新型电化学传感器、有机场效应晶体管等方面的研究。近年来,以第一作者和通讯作者在Chem. Comm.、ACS Applied Materials & Interface、Inorganic Chemistry、Chemistry-A European Journal等杂志发表SCI论文多篇。
引用本文:    
孔霞, 宋浩冉, 宋佳音, 管宗上, 郭宗庆, 路广. 多维感知柔性电子皮肤的发展现状[J]. 材料导报, 2022, 36(11): 20120209-11.
KONG Xia, SONG Haoran, SONG Jiayin, GUAN Zongshang, GUO Zongqing, LU Guang. Development Status on the Multi-dimensional Sensing Flexible Electronic Skin. Materials Reports, 2022, 36(11): 20120209-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120209  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20120209
1 Clippinger F W, Avery R, Titus B R. Bulletin of Prosthetics Research, 1974, 10-22(2),247.
2 Jiang F K, Tai Y C, Walsh K, et al. In: Proceedings IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. Nagoya, Japan, 1997, pp. 465.
3 Lumelsky V J, Shur M S, Wagner S.IEEE Sensors Journal,2001,1,41.
4 Lacour S P, Wagner S, Huang Z Y, et al. Applied Physics Letters, 2003, 82, 2404.
5 Yamamoto Y, Yamamoto D, Takada M, et al. Advanced Healthcare Materials, 2017, 6(17), 1700495.
6 Hua Q, Sun J, Liu H, et al. Nature Communications, 2018, 9(1), 244.
7 Yu Y, Nassar J, Xu C, et al. Science Robotics,2020,5(41),eaaz7946.
8 Jeon S, Lim S C, Trung T Q, et al. Proceedings of the IEEE, 2019, 107(10), 2065.
9 Gao X Y. Fabrication of fiber-shaped quantum dot-sensitized solar cells based on metal sulfide micro/nano-structured counter electrodes and various flexible temperature sensors. Master's Thesis, Xiamen University, China, 2019(in Chinese).
高晓月. 基于金属硫化物微纳米薄膜对电极的纤维状量子点敏化太阳能电池和多种柔性温度传感器的制备研究. 硕士学位论文, 厦门大学, 2019.
10 Zhou X. Force sensitive and photosensitive electronic skin research based on graphene materials. Master's Thesis, University of Chinese Academy of Sciences, China, 2019(in Chinese).
周熙. 基于石墨烯材料的力敏和光敏电子皮肤研究. 硕士学位论文, 中国科学院大学, 2019.
11 Niu K L. The study of photoelectrochemical sensors based on inorganic semiconductor nanomaterials. Master's Thesis, Northeastern University, China, 2016(in Chinese).
牛凯丽. 基于无机半导体纳米材料的光电化学传感器研究. 硕士学位论文, 东北大学, 2016.
12 Pang Y, Tian H, Tao L, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 26458.
13 Yan S C, Li Z, Guo X H, et al. Journal of Shihezi University(Natural Science), 2020, 38(2), 141(in Chinese).
闫绍村, 李哲, 郭旭虹, 等. 石河子大学学报(自然科学版), 2020, 38(2), 141.
14 Li Y M. PZT nanowires/graphene film flexible heterogeneous integration and its piezoresistive properties. Master's Thesis, North University of China, 2020(in Chinese).
李伊梦. PZT纳米线/石墨烯薄膜柔性化异质集成及其压阻性能研究. 硕士学位论文, 中北大学, 2020.
15 Xie X X, Wang Y, Zhu J, et al. Modern Chemical Industry, 2020, 40(10), 188(in Chinese).
谢晓旭, 王彦, 诸静, 等. 现代化工, 2020, 40(10), 188.
16 Li S Y, Liu J R, Wen H, et al. Acta Physica Sinica, 2020, 69(17), 130(in Chinese).
李胜优, 刘镓榕, 文豪, 等. 物理学报, 2020, 69(17), 130.
17 Zhang M, Wang C, Wang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20894.
18 Li B T. Polypyrrole-coated silk fabric and its application in flexible electronic devices. Master's Thesis, Southwest University, China, 2018(in Chinese).
李彬天. 聚吡咯修饰蚕丝的制备及其在柔性电子器件中的应用. 硕士学位论文, 西南大学, 2018.
19 Li Q S. Research on fabrication and applications of silk fibroin based optical and electronic sensing devices. Ph.D. Thesis, Lanzhou University, China, 2019(in Chinese).
李青松. 基于蚕丝蛋白的光、电传感器件的制备及其应用研究. 博士学位论文, 兰州大学, 2019.
20 Sun T. The design, fabrication and characteristics of e-textile strain sensors. Master's Thesis, University of Electronic Science and Technology, China, 2020(in Chinese).
孙腾. 柔性织物应变传感器的设计制备及性能研究. 硕士学位论文, 电子科技大学, 2020.
21 Qi H, Schulz B, Vad T, et al. ACS Applied Materials & Interfaces, 2015, 7(40), 22404.
22 Qiao H Y. Preparation of multifunctional hydrogel and its application in strain sensor. Master's Thesis, Qingdao University, China, 2019(in Chinese).
乔海燕. 多功能水凝胶的制备及其在应变传感器中的应用. 硕士学位论文, 青岛大学, 2019.
23 Guo Z X. Research on printed capacitive flexible pressure sensor based on new functional composite. Master's Thesis, Beijing Institute of Graphic Communication, China, 2020(in Chinese).
郭振新. 基于新型功能复合材料的印刷电容式柔性压力传感器研究. 硕士学位论文, 北京印刷学院, 2020.
24 Gao K C, Huang Y, Wu D M, et al. Instrument Technology and Sensor, 2020(3), 6(in Chinese).
高孔超, 黄尧, 吴大鸣, 等. 仪器技术与传感器, 2020(3), 6.
25 He J, Hou M L, Peng Z R, et al. Optical Communication Technology, 2019, 43(11), 10(in Chinese).
何金, 侯鳗玲, 彭作蕊, 等. 光通讯技术, 2019, 43(11), 10.
26 Jiang Y, Chang Y, Gao C H, et al. Chinese Journal of Sensors and Actua-tors, 2018, 31(10), 1461(in Chinese).
江源, 常烨, 高传海, 等. 传感技术学报, 2018, 31(10), 1461.
27 Xu X W. Flexible multi-sensors/arrays with the embedded heaters on polvimide. Master's Thesis, East China Normal University, China, 2016(in Chinese).
徐骁雯. 基于柔性PI衬底的加热型传感器/阵列相关技术研究. 硕士学位论文, 华东师范大学, 2016.
28 Yang A, Li Y, Yang C, et al. Advanced Materials, 2018, 30, 1800051.
29 Oh S Y, Hong S Y, Jeong Y R, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13729.
30 Liu Q, Chen J, Li Y, et al. ACS Nano, 2016, 10(8), 7901.
31 Cai Y, Shen J, Dai Z, et al. Advanced Materials, 2017, 29(31), 1606411.
32 Wang Z, Chen J, Cong Y, et al. Chemistry of Materials, 2018, 30(21), 8062.
33 Kim T, Park J Y, Sohn J, et al. ACS Nano, 2016, 10(4), 4770.
34 Choong C L, Shim M B, Lee B S, et al. Advanced Materials, 2014, 26(21), 3451.
35 Wang Y, Sunghoon L, Tomoyuki Y, et al. Science Advances, 2020, 6(33), 7043.
36 Peng W W, Han L, Huang H L, et al. Journal of Materials Chemistry A, 2020, 8, 26109.
37 Pena-Francesch A, Jung H, Demirel M C, et al. Nature Materials, 2020, 19(11), 1.
38 Khatib M, Zohar O, Saliba W, et al. Advanced Materials, 2020, 32(17), 2000246.
39 Fan F R, Lin L, Zhu G, et al. Nano Letters, 2012, 12(6), 3109.
40 Lin L, Xie Y N, Wang S H, et al. ACS Nano, 2013, 7(9), 8266.
41 Xue X Y, Fu Y M, Wang Q, et al. Advanced Functional Materials, 2016, 26(18), 3128.
42 Guo H, Yeh M H, Lai Y C, et al. ACS Nano, 2016, 10(11), 10580.
43 Xiong J, Thangavel G, Wang J, et al. Science Advances, 2020, 6(29), 4246.
44 Bandodkar A J, Lee S P, Huang I, et al. Nature Electronics, 2020, 3(9), 1.
45 Tan Y, Yang K, Wang B, et al. Nano Research, 2021, 14, 3969.
46 Zhu M M, Lou M N, Yu J Y, et al. Nano Energy, 2020, 78, 105208.
47 Gong S, Zhang B, Zhang J, et al. Advanced Functional Materials, 2020, 30, 1908724.
48 Someya T, Kato Y, Sekitani T, et al. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35), 12321.
49 Kim J, Lee M, Shim H J, et al. Nature Communications, 2014, 5, 5747.
50 Ji X D, Lau H Y, Ren X C, et al. Advanced Materials Technologies, 2016, 1(5), 1600042.
51 Silva C A, Lv J, Yin L, et al. Advanced Functional Materials, 2020, 30(30), 2002041.
52 Ding T P, Chan K H, Zhou Y, et al. Nature Communications, 2020, 11, 6006.20120209-20120209-
53 Xie M S. Preparation of magnetic biocompatible nanocomposites and their applications in biosensors. Master's Thesis, Shenzhen University, China, 2016(in Chinese).
谢敏随. 生物相容性磁性纳米粒子的制备及其在生物传感器中的应用研究. 硕士学位论文, 深圳大学, 2016.
54 Ji W X. The synthesis of biocompatible composite fluorescent semiconductor nanocrystals. Master's Thesis, Tiangong University, China, 2017(in Chinese).
季文学. 生物相容性荧光半导体复合纳米晶的合成. 硕士学位论文, 天津工业大学, 2017.
55 Bian Y S, Liu K, Guo Y L, et al. Acta Chimica Sinica, 2020, 78(9), 848(in Chinese).
边洋爽, 刘凯, 郭云龙, 等. 化学学报, 2020, 78(9), 848.
56 Zhao X F, Hang C Z, Wen X H, et al. ACS Applied Materials & Interfaces, 2020, 12(12), 14136.
57 Chen L, Wang Y, Li H H, et al. Journal of Shanghai Jiao Tong University, 2020, 54(5), 499(in Chinese).
陈乐, 王英, 李海华. 上海交通大学学报, 2020, 54(5), 499.
58 Chen D, Liu Z, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12(27), 30896.
59 Jeong C, Ko H, Kim H T, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18813.
60 Chen T, Wang R R, Li X H. Chinese Journal of Sensors and Actuators, 2019, 32(4), 52(in Chinese).
陈瞳, 王瑞荣, 李晓红. 传感技术学报, 2019, 32(4), 52.
61 Maity K, Garain S, Henkel K, et al. ACS Applied Polymer Materials, 2020, 2(2), 862.
62 Zhao S, Zhu R. Acta Chimica Sinica,2019,77(12),1250(in Chinese).
赵帅, 朱荣. 化学学报, 2019, 77(12), 1250.
63 Shevate R, Haque M A, Akhtar F S, et al. Angewandte Chemie International Edition, 2018, 57, 11218.
64 He P, Brent J R, Ding H, et al. Nanoscale, 2018, 10, 5599.
65 Mondal S, Kim S J, Cho C G. ACS Applied Materials & Interfaces, 2020, 12(14), 17029.
66 Duan Z H, Jiang Y D, Yan M G, et al. ACS Applied Materials & Interfaces, 2019, 11(24), 21840.
67 Miao L M, Wan J, Song Y, et al. ACS Applied Materials & Interfaces, 2019, 11(42), 39219.
68 Oh J H, Hong S Y, Park H, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7263.
69 Yu Y Y, Peng S H, Blanloeuil P, et al. ACS Applied Materials & Interfaces, 2020, 12(32), 36578.
70 Trung T Q, Dang T M L, Ramasundaram S, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 2317.
71 Rao J H, Chen Z T, Zhao D N, et al. Nano Energy, 2020, 75, 105073.
72 Zhao X H, Ma S N, Yuan H Y, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 3986.
73 Li M F, Chen J X, Zhong W B, et al. ACS Sensors, 2020, 5(8), 2545.
74 Zhu L F, Wang Y C, Me D Q, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 31725.
75 Gao Z Y, Lou Z, Han W, et al. ACS Applied Materials & Interfaces, 2020, 12(21), 24339.
76 Lipani L, Dupont B G, Doungmene F, et al. Nature Nanotechnology, 2018, 13, 504.
77 Cui Y X, Duan W, Jin Y, et al. ACS Sensors, 2020, 5(7), 2096.
78 Yoon J H, Kim S M, Eom Y, et al. ACS Applied Materials & Interfaces, 2019, 11(49), 46165.
79 Nyein H Y Y, Tai L C, Ngo Q P, et al. ACS Sensors,2018,3(5),944.
80 Zhai Q F, Yap L W, Wang R, et al. Analytical Chemistry, 2020, 92(6), 4647.
81 Zhou L, Cui Y, He C X. Chinese Journal of Analytical Chemistry, 2020, 48(4), 516(in Chinese).
周靓, 崔媛, 赫春香. 分析化学, 2020, 48(4), 516.
82 Yang W Y, Han W X, Gao H L, et al. Nanoscale, 2018, 10, 2099.
83 Jang K I, Li K, Chung H U, et al. Nature Communications, 2017, 8, 15894.
84 Han S, Kim J, Won S M, et al. Science Translational Medicine, 2018, 10(465), 4950.
85 Liu Y Q. The fabrication of multi-response flexible electronic skin.Ph.D. Thesis, Jilin University, China, 2020(in Chinese).
刘雨晴. 多重响应柔性电子皮肤的研制. 博士学位论文, 吉林大学, 2020.
86 Liu Y, Hu Y, Zhao J, et al. Small, 2016, 12(36), 5074.
87 Lee W W, Tan Y J, Yao H, et al. Science Robotics, 2019, 4(32), 2198.
88 Nabar B P, Çelik-Butler Z, Butler D P. IEEE Sensors Journal, 2015, 15(1), 63.
89 Zhou Q H. Artificial skin based on flexible transparent electrodes for visua-lized tactile sensing. Master's Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
周启豪. 基于透明柔性电极的可视化触摸感知皮肤. 硕士学位论文, 华中科技大学, 2016.
90 Park S, Heo S W, Lee W, et al. Nature, 2018, 561, 516.
91 Chen S. Integration and performance of flexible bionic sensing devices. Ph.D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese).
陈帅. 柔性仿生电子传感器件的集成与性能研究. 博士学位论文, 北京科技大学, 2018.
92 Ye M, Gao X, Hong X, et al. Sustainable Energy & Fuels,2017,1(6), 1217.
93 Zhang F F, Wang T T, Li Q S, et al. Light Industrial Science and Technology, 2018, 34(9), 111(in Chinese).
张飞飞, 王彤彤, 李青松, 等. 轻工科技, 2018, 34(9), 111.
94 Cheng W, Wang J, Ma Z, et al. IEEE Electron Device Letters, 2018, 39(2), 288.
95 Zhang H H. Construction and application of silk fabric-based energy and sensing devices. Master's Thesis, Southwest University, China, 2017(in Chinese).
张慧慧. 蚕丝织物基底上柔性能源、传感器件的构建与应用. 硕士学位论文, 西南大学, 2017.
96 Zhang Y, Fang Y, Li J, et al. ACS Applied Materials & Interfaces, 2017, 9(42), 37493.
97 Jeon J, Lee H, Bao Z. Advanced Materials, 2013, 25, 850.
98 Zhu M, Wang Y, Lou M, et al. Nano Energy, 2021, 81, 105669.
99 Li Z, Zhu M, Shen J, et al. Advanced Functional Materials, 2020, 30, 1908411.
100 Lyu X Z. Interfacial stress sensors for artificial skin application. Ph.D. Thesis, Donghua University, China, 2012(in Chinese).
吕晓洲. 用于电子皮肤的新型压力传感器的研究. 博士学位论文, 东华大学, 2012.
No related articles found!
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed