Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18090-18095    https://doi.org/10.11896/cldb.20080089
  无机非金属及其复合材料 |
细粒式沥青混合料断裂愈合预估模型
范世平, 朱洪洲
重庆交通大学土木工程学院, 重庆 400074
Prediction Model of Fracture-healing of Fine-grained Asphalt Mixture
FAN Shiping, ZHU Hongzhou
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 8750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析沥青混合料断裂愈合预估模型,采用70#基质沥青和SBS改性沥青制备AC-13混合料半圆试件,通过半圆弯曲试验获得荷载-位移曲线,将断裂的半圆试件拼接后放入烘箱中养护,并对养护后的试件进行二次加载。采用愈合后和愈合前两次加载的临界荷载比作为愈合指数(Healing index,HI),并用其评价混合料的断裂愈合性能。根据毛细流动原理,建立沥青混合料愈合预估模型,并根据试验结果验证该模型的适用性,根据HI建立愈合时间和愈合温度的转换关系。结果表明:发生开裂的沥青混合料试件在特定的环境中养护后具备二次承载的能力,虽然HI<1.0,但试件在100 ℃ & 12 h环境中愈合后,HI可达到0.7,即愈合后抗拉强度恢复了70%;愈合时间从4~8 h延长至8~12 h时,100 ℃环境中70# AC-13混合料的HI增长速率分别为0.096/h和0.023/h,SBS AC-13混合料的HI增长速率分别为0.096/h和0.009/h,说明HI随愈合时间的延长而增加,但增长速率先增后减;采用函数HI(t)=(-1+e-Ct)2(C >0)能较好地拟合不同愈合温度下愈合指数随愈合时间的变化,拟合系数R2>0.90;根据HI值建立愈合温度和愈合时间的转换模型t(T)=C3·eC4/T(0<C3<1,0<C4, R2>0.95)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范世平
朱洪洲
关键词:  道路工程  愈合性能  半圆弯曲试验  沥青混合料  预估模型  毛细流动原理    
Abstract: In order to study the prediction model of fracture-healing property of asphalt mixture, in this paper, 70# matrix asphalt and SBS modified asphalt were used to make AC-13 mixture semi-circular specimen. The load-displacement curves were obtained through the semi-circular bending test (SCB), and the cracked semi-circular specimen was spliced and placed in an oven for healing. The secondary loading was applied to the healed specimen. The peak load ratio after and before healing was used as the healing index (HI) to evaluate the fracture-healing property of the mixture. According to the capillary flow principle, the prediction model of asphalt mixture healing was established, and it was used to fit the test results. The conversion equation between healing time and temperature during HI fixation was established by fitting equation. The results show that the fractured asphalt mixture has the secondary bearing capacity after healing in a specific environment. Although the HI value is less than 1.0, it can reach 0.7 in the healing condition of 100 ℃ &12 h, That is, the tensile strength recovers by 70% after healing; When the healing time is from 4 h to 8 h and 8 h to 12 h, the HI growth rate of 70# AC-13 asphalt mixture in 100 ℃ are 0.096/h and 0.023/h, respectively. The HI growth rate of SBS AC-13 asphalt mixture are 0.096/h and 0.009/h, respectively, it shows that HI increases with the increase of healing time, but the growth rate increases first and then decreases. A function HI(t)=(-1+e-Ct)2(C>0)can be used to fit the change of healing index with healing time at different healing temperatures, and the fitting coefficient is R 2>0.90. Based on the principle of time-temperature equivalence, a transition model t(T)=C3·eC4/T(0<C3<1,0<C4, R 2>0.95) between healing temperature and healing time is established.
Key words:  road engineering    healing performance    semicircle bending test    asphalt mixture    prediction model    capillary flow principle
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  U414  
基金资助: 国家自然科学基金(50808189);高寒高海拔地区道路工程安全与健康国家重点实验室开放基金(YGY 2017 KYPT-02); 重庆市研究生科研创新项目(CYB21211)
作者简介:  范世平,2018 年毕业于重庆交通大学,获得硕士学位。现为重庆交通大学土木工程学院博士研究生,指导老师为朱洪洲教授。目前主要研究领域为沥青材料的自愈合性能。朱洪洲,现为重庆交通大学土木工程学院教授,博士研究生导师,交通土建工程材料国家地方联合工程实验室常务副主任,2005年毕业于东南大学,获工学博士学位,2013—2014年公派美国罗格斯新泽西州立大学访问学者。近年来主持国家自然科学基金项目2项,科技部重点专项子课题1项,交通运输部建设科技项目2项,参编行业和地方标准规范4部,获得省部级科技进步一等奖1项、二等奖2项,发表科研论文90余篇,主要从事功能性路面、路面材料疲劳损伤理论等方面的研究。
引用本文:    
范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
FAN Shiping, ZHU Hongzhou. Prediction Model of Fracture-healing of Fine-grained Asphalt Mixture. Materials Reports, 2021, 35(18): 18090-18095.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080089  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18090
1 Huang W D, Li B L, Huang M. Journal of Building Materials, 2015, 18(4), 572(in Chinese).
黄卫东, 李本亮, 黄明.建筑材料学报, 2015, 18 (4), 572.
2 Dong R K, Zheng M, Huang W D, et al. China Journal of Highway and Transport, 2015, 28(5), 87(in Chinese).
董瑞琨, 郑茂, 黄卫东, 等.中国公路学报, 2015, 28 (5), 87.
3 Zhu H Z, Fan S P, Li Z H. Journal of Building Materials, 2018, 21(3), 426(in Chinese).
朱洪洲,范世平,李正浩.建筑材料学报, 2018,21(3), 426.
4 Bazin P, Saunier J. In: Deformability, Proceeding of the Second International Conference on the Structural Design of Asphalt Pavement. Ann Arbor, 1967, pp. 438.
5 García . Fuel, 2012, 93, 264.
6 Bhasin A, Little D N, Bommavaram R, et al. Road Materials and Pavement Design, 2008, 9(sup1), 219.
7 Wool R P, O'Connor K M. Journal of Applied Physics, 1981, 52(10), 5953.
8 He L, Li G, Lv S, et al. Construction and Building Materials, 2020, 254, 119225.
9 Sun D Q, Zhang L W, Liang G. Petroleum Asphalt, 2011, 25 (5), 7 (in Chinese).
孙大权, 张立文, 梁果.石油沥青, 2011, 25(5), 7.
10 Qiu J, Ven M, Wu S, et al. Experimental Mechanics, 2012, 52(8), 1163.
11 Cui Y N, Li X S, Wu H X, et al. Journal of Building Materials, 2021, 24(2), 432 (in Chinese).
崔亚楠,李雪杉,吴华信,等.建筑材料学报, 2021, 24(2), 432.
12 Huang M, Wang X, Huang W D. China Journal of Highway and Transport, 2013,26 (4). 16 (in Chinese).
黄明,汪翔,黄卫东.中国公路学报, 2013,26 (4), 16.
13 Huang W D, Lin P, Zheng M, et al. Journal of Building Materials, 2016, 19 (5), 950 (in Chinese).
黄卫东, 林鹏, 郑茂,等.建筑材料学报, 2016, 19 (5), 950.
14 Dai Q, Wang Z, Hasan M R M. Construction and Building Materials, 2013, 49 (12), 729.
15 García A, Bueno M, Norambuena-Contreras J, et al. Construction and Building Materials, 2013,49,1.
16 Phan T M, Park D W, Le T H M. Construction and Building Materials, 2018, 180, 503.
17 He L, Zhao L, Ling T Q, et al. China Journal of Highway and Transport, 2017, 30 (1), 17 (in Chinese).
何亮, 赵龙, 凌天清, 等.中国公路学报, 2017, 30 (1), 17.
18 Tian Y, Pang Q, Sun G Q, et al. Petroleum Asphalt, 2016,30(5), 27(in Chinese).
田洋,庞琦,孙国强, 等.石油沥青,2016,30(5), 27.
19 Gallego J, Val M A D. Contreras V, et al. Construction and Building Materials, 2013,42(42), 1.
20 Xu C. Study on self-healing characteristics and influencing factors of asphalt. Master's Thesis, Chongqing Jiaotong University, China, 2013 (in Chinese).
徐辰. 沥青自愈合特性及影响因素研究. 硕士学位论文,重庆交通大学,2013.
21 Hamraoui A, Thuresson K, Nylander T, et al. Journal of Colloid and Interface Science, 2000, 226, 199.
22 Hamraoui A, Nylander T. Journal of Colloid and Interface Science, 2002,250, 415.
[1] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[2] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[3] 王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
[4] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[5] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[6] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[7] 成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
[8] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[9] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[10] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[11] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[12] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[13] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[14] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[15] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed