Abstract: The shortage of fresh water, which afflicts two-thirds of the global population, has become a worldwide problem. In nature, spider silk has the ability to collect water from fog because of its unique periodic spindle-knotted structure and chemical composition. This phenomenon urges researchers to fabricate the bioinspired spindle-knotted microfibers with high water collection efficiency and explore its water collection mechanism. Usually, spindle-knotted microfibers can be fabricated by dip-coating, fluid-coating and electrospinning technology. However, these approaches have little control over the size and shape of spindle-knotted microfibers, which limits application of spindle-knotted microfibers in water collection. Microfluidic spinning technology is not only controllable, safe and stable, but also can assemble various materials simultaneously. Therefore, microfluidic spinning technology is becoming a research hotspot for its controllable fabrication of spindle-knotted microfibers. Microfluidics for fabricating spindle-knotted microfibers can be divided into three categories, pneumatic-valve microfluidic-chip spinning method, emulsion based coaxial microfluidic method and poly-phase laminar flow based coaxial microfluidic method. By adjusting the liquid velocity and composition, the size, spacing, surface roughness and other aspects of the spindle-knot on the fiber can be regulated. By exploring the diffe-rence of the water collection performance of the spindle-knotted microfibers under different conditions, the water collection mechanism has been studied to improve the water collection efficiency. This article systematically reviews the research progress of the spindle-knotted microfibers fabricated by microfluidic in the field of water collection. The water collection process of spider silk and the preparation method of spindle-knotted microfibers using microfluidic spinning technology have been summarized, and special emphasis is given to the water collection mechanism and the water collection ability of spindle-knotted microfibers. It is expected to provide scientific guidance for the controllable preparation and water collection application of the new spindle-knotted microfibers.
1 Vörösmarty C J, Green P, Salisbury J,et al. Science,2000,289(5477), 284. 2 Mekonnen M M, Hoekstra A Y. Science Advances,2016,2(2),1500323. 3 Service R F. Science, 2006, 313(5790), 1088. 4 Werber J R, Osuji C O, Elimelech M. Nature Reviews Materials, 2016, 1(5), 16018. 5 Qi H S, Wei T Q, Zhao W, et al. Advanced Materials, 2019, 31(13), 1903378. 6 Sun Z Z, Li W Z, Song W L,et al. Journal of Materials Chemistry A, 2020, 8(1), 349. 7 Guo Y H, Lu H Y, Zhao F,et al. Advanced Materials, 2020, 32(11), 1907061. 8 Parker A R, Lawrence C R. Nature, 2001, 414, 33. 9 Yi S Z, Wang J, Chen Z P, et al. Advanced Materials Technologies, 2019, 4(12), 1900727. 10 Zheng Y M, Bai H, Huang Z B,et al. Nature, 2010, 463(7281), 640. 11 Tian X L, Chen Y, Zheng Y M,et al. Advanced Materials, 2011, 23(46), 5486. 12 Bai H, Sun R Z, Ju J,et al. Small, 2011, 7(24), 3429. 13 Tian X L, Bai H, Zheng Y M, et al. Advanced Functional Materials, 2011, 21(8), 1398. 14 Du M, Zhao Y, Tian Y, et al. Small, 2016, 12(8), 1000. 15 Li T X, Ding X, Tian L L, et al. Journal of Materials Science, 2017, 52(18), 10661. 16 Tian Y, Zhu P A, Tang X, et al. Nature Communications, 2017, 8(1), 1080. 17 Shang L R, Wang Y T, Yu Y R, et al. Journal of Materials Chemistry A, 2017, 5(29), 15026. 18 Peng Q F, Shao H L, Hu X C, et al. Macromolecular Materials and Engineering, 2017, 302(10), 1700102. 19 Omenetto F G, Kaplan D L. Science, 2010, 329(5991), 528. 20 Zhou Z T, Zhang S Q, Cao Y, et al. Advanced Materials, 2018, 30(33), 1706983. 21 Elettro H, Neukirch S, Vollrath F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22), 6143. 22 Kluge J A, Rabotyagova O, Leisk G G, et al. Trends in biotechnology, 2008, 26(5), 244. 23 Peters H M. Zoomorphology, 1984, 104(2), 96. 24 Porter D, Vollrath F. Advanced Materials, 2009, 21(4), 487. 25 Bai H, Ju J, Zheng Y M, et al. Advanced Materials,2012,24(20),2786. 26 Chen Y, Zheng Y M. Nanoscale, 2014, 6(14), 7703. 27 Vollrath F, Edmonds D T. Nature, 1989, 340(6231), 305. 28 Rising A, Johansson J. Nature Chemical Biology, 2015, 11(5), 309. 29 He X H, Wang W, Deng K, et al. RSC Advances, 2015, 5(2), 928. 30 Yu Y, Wen H, Ma J, et al. Advanced Materials, 2014, 26(16), 2494. 31 Kang E, Jeong G S, Choi Y Y, et al. Nature Materials, 2011, 10(11), 877. 32 Sun T, Hu C, Nakajima M, et al. Microfluidics and Nanofluidics, 2015, 18(5-6), 1177. 33 Tian Y, Wang J C, Wang L Q. ACS Applied Materials & Interfaces, 2018, 10(35), 29219. 34 Wu Z Q, Wang J, Zhao Z, et al. ChemPhysChem, 2018, 19(16), 1990. 35 Ji X B, Guo S, Zeng C F, et al. RSC Advances, 2015, 5(4), 2517. 36 He X H, Wang W, Liu Y M, et al. ACS Applied Materials & Interfaces, 2015, 7(31), 17471. 37 Chen W, Guo Z. Nanoscale, 2019, 11(33), 15448. 38 Shang L R, Wang Y T, Yu Y R, et al. Journal of Materials Chemistry A, 2017, 5(29), 15026. 39 Xie R X, Xu P D, Liu Y P, et al. Advanced Materials, 2018, 30(14), 1705082. 40 Liu Y F, Yang N, Li X, et al. Small, 2020, 16(9), 1901819. 41 Shang L R, Fu F F, Cheng Y, et al. Small, 2017, 13(4), 1600286. 42 Lorenceau L, Qur D. Journal of Fluid Mechanics,2004,510(510),29. 43 Chaudhury M K, Whitesides G M. Science, 1992, 256(5063), 1539. 44 Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504), 633. 45 Quéré D, Azzopardi M J, Delattre L. Langmuir, 1998, 14(8), 2213. 46 Hou Y P, Chen Y, Xue Y, et al. Langmuir, 2012, 28(10), 4737. 47 Dong H, Zheng Y M, Wang N, et al. Advanced Materials Interfaces, 2016, 3(11), 1500831. 48 Cui Y, Li D W, Bai H. Industrial & Engineering Chemistry Research, 2017, 56(17), 4887. 49 Li J, Guo Z G. Nanoscale, 2018, 10(29), 13814.