Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20060132-7    https://doi.org/10.11896/cldb.20060132
  高分子与聚合物基复合材料 |
纺锤节微纤维的微流控制备及集水机制的研究进展
刘环宇, 孙鹤家, 尹伟, 王艺颖, 孟涛
西南交通大学生命科学与工程学院,成都 610031
Recent Advances of Microfluidics-based Preparation Methods and Water Collection Mechanisms of Bioinspired Spindle-Knotted Microfibers
LIU Huanyu, SUN Hejia, YIN Wei, WANG Yiying, MENG Tao
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 4685KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 淡水资源紧缺困扰着全球2/3的人口,已经成为一个世界性难题。自然界中,蜘蛛丝独特的周期性纺锤节结构和化学成分使其能从雾气中收集水分,这促使研究人员开发具有高集水效率的仿蛛丝纺锤节微纤维材料,并探索其集水机理。
制备纺锤节微纤维的常见方法,如浸涂法、流体涂层法、静电纺丝法,均难以对纺锤节微纤维的尺寸和形状等微观形貌进行自由调控,限制了纺锤节微纤维在集水领域的应用。微流控纺丝技术具有灵活可控,安全稳定,能组装多种材料等优势。因此,近年来使用微流控纺丝技术可控制备纺锤节微纤维逐渐成为研究热点。
目前,使用微流控制备仿蛛丝微纤维的方法主要为气动阀微流控芯片法、基于乳液的同轴微流控法、基于多相层状流的同轴微流控法。研究者们通过对微通道内液体流速及组分的调节,实现了对纤维上纺锤节的大小、间距、表面粗糙度等的调控。并探究了不同条件下纺锤节微纤维集水性能的差别,以研究集水机制及提升集水效率的方法。
本文系统综述了微流控制备纺锤节微纤维在集水领域的研究进展,介绍了蛛丝的集水过程,微流控制备纺锤节微纤维的工艺,重点阐述了纺锤节微纤维的集水机制及集水性能,以期对新型纺锤节微纤维材料的可控制备及集水应用提供科学指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘环宇
孙鹤家
尹伟
王艺颖
孟涛
关键词:  微流体  微纤维  纺锤节  集水    
Abstract: The shortage of fresh water, which afflicts two-thirds of the global population, has become a worldwide problem. In nature, spider silk has the ability to collect water from fog because of its unique periodic spindle-knotted structure and chemical composition. This phenomenon urges researchers to fabricate the bioinspired spindle-knotted microfibers with high water collection efficiency and explore its water collection mechanism.
Usually, spindle-knotted microfibers can be fabricated by dip-coating, fluid-coating and electrospinning technology. However, these approaches have little control over the size and shape of spindle-knotted microfibers, which limits application of spindle-knotted microfibers in water collection. Microfluidic spinning technology is not only controllable, safe and stable, but also can assemble various materials simultaneously. Therefore, microfluidic spinning technology is becoming a research hotspot for its controllable fabrication of spindle-knotted microfibers.
Microfluidics for fabricating spindle-knotted microfibers can be divided into three categories, pneumatic-valve microfluidic-chip spinning method, emulsion based coaxial microfluidic method and poly-phase laminar flow based coaxial microfluidic method. By adjusting the liquid velocity and composition, the size, spacing, surface roughness and other aspects of the spindle-knot on the fiber can be regulated. By exploring the diffe-rence of the water collection performance of the spindle-knotted microfibers under different conditions, the water collection mechanism has been studied to improve the water collection efficiency.
This article systematically reviews the research progress of the spindle-knotted microfibers fabricated by microfluidic in the field of water collection. The water collection process of spider silk and the preparation method of spindle-knotted microfibers using microfluidic spinning technology have been summarized, and special emphasis is given to the water collection mechanism and the water collection ability of spindle-knotted microfibers. It is expected to provide scientific guidance for the controllable preparation and water collection application of the new spindle-knotted microfibers.
Key words:  microfluidics    microfiber    spindle-knot    water collection
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金 (21776230)
通讯作者:  taomeng@swjtu.edu.cn   
作者简介:  刘环宇,2019年6月毕业于西南交通大学,获得工学学士学位。现为西南交通大学生命科学与工程学院硕士研究生,在孟涛教授的指导下进行研究。目前主要研究领域为微流控制备仿生集水纤维。
孟涛,西南交通大学生命科学与工程学院教授,博士研究生导师。主要从事生物化工与功能材料研究。1999年6月本科毕业于南京工业大学材料科学与工程学院,2010年6月在四川大学化学工程学院获得博士学位。2012—2013年在美国哈佛大学工程与应用科学学院从事博士后研究工作。
引用本文:    
刘环宇, 孙鹤家, 尹伟, 王艺颖, 孟涛. 纺锤节微纤维的微流控制备及集水机制的研究进展[J]. 材料导报, 2022, 36(5): 20060132-7.
LIU Huanyu, SUN Hejia, YIN Wei, WANG Yiying, MENG Tao. Recent Advances of Microfluidics-based Preparation Methods and Water Collection Mechanisms of Bioinspired Spindle-Knotted Microfibers. Materials Reports, 2022, 36(5): 20060132-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060132  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20060132
1 Vörösmarty C J, Green P, Salisbury J,et al. Science,2000,289(5477), 284.
2 Mekonnen M M, Hoekstra A Y. Science Advances,2016,2(2),1500323.
3 Service R F. Science, 2006, 313(5790), 1088.
4 Werber J R, Osuji C O, Elimelech M. Nature Reviews Materials, 2016, 1(5), 16018.
5 Qi H S, Wei T Q, Zhao W, et al. Advanced Materials, 2019, 31(13), 1903378.
6 Sun Z Z, Li W Z, Song W L,et al. Journal of Materials Chemistry A, 2020, 8(1), 349.
7 Guo Y H, Lu H Y, Zhao F,et al. Advanced Materials, 2020, 32(11), 1907061.
8 Parker A R, Lawrence C R. Nature, 2001, 414, 33.
9 Yi S Z, Wang J, Chen Z P, et al. Advanced Materials Technologies, 2019, 4(12), 1900727.
10 Zheng Y M, Bai H, Huang Z B,et al. Nature, 2010, 463(7281), 640.
11 Tian X L, Chen Y, Zheng Y M,et al. Advanced Materials, 2011, 23(46), 5486.
12 Bai H, Sun R Z, Ju J,et al. Small, 2011, 7(24), 3429.
13 Tian X L, Bai H, Zheng Y M, et al. Advanced Functional Materials, 2011, 21(8), 1398.
14 Du M, Zhao Y, Tian Y, et al. Small, 2016, 12(8), 1000.
15 Li T X, Ding X, Tian L L, et al. Journal of Materials Science, 2017, 52(18), 10661.
16 Tian Y, Zhu P A, Tang X, et al. Nature Communications, 2017, 8(1), 1080.
17 Shang L R, Wang Y T, Yu Y R, et al. Journal of Materials Chemistry A, 2017, 5(29), 15026.
18 Peng Q F, Shao H L, Hu X C, et al. Macromolecular Materials and Engineering, 2017, 302(10), 1700102.
19 Omenetto F G, Kaplan D L. Science, 2010, 329(5991), 528.
20 Zhou Z T, Zhang S Q, Cao Y, et al. Advanced Materials, 2018, 30(33), 1706983.
21 Elettro H, Neukirch S, Vollrath F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22), 6143.
22 Kluge J A, Rabotyagova O, Leisk G G, et al. Trends in biotechnology, 2008, 26(5), 244.
23 Peters H M. Zoomorphology, 1984, 104(2), 96.
24 Porter D, Vollrath F. Advanced Materials, 2009, 21(4), 487.
25 Bai H, Ju J, Zheng Y M, et al. Advanced Materials,2012,24(20),2786.
26 Chen Y, Zheng Y M. Nanoscale, 2014, 6(14), 7703.
27 Vollrath F, Edmonds D T. Nature, 1989, 340(6231), 305.
28 Rising A, Johansson J. Nature Chemical Biology, 2015, 11(5), 309.
29 He X H, Wang W, Deng K, et al. RSC Advances, 2015, 5(2), 928.
30 Yu Y, Wen H, Ma J, et al. Advanced Materials, 2014, 26(16), 2494.
31 Kang E, Jeong G S, Choi Y Y, et al. Nature Materials, 2011, 10(11), 877.
32 Sun T, Hu C, Nakajima M, et al. Microfluidics and Nanofluidics, 2015, 18(5-6), 1177.
33 Tian Y, Wang J C, Wang L Q. ACS Applied Materials & Interfaces, 2018, 10(35), 29219.
34 Wu Z Q, Wang J, Zhao Z, et al. ChemPhysChem, 2018, 19(16), 1990.
35 Ji X B, Guo S, Zeng C F, et al. RSC Advances, 2015, 5(4), 2517.
36 He X H, Wang W, Liu Y M, et al. ACS Applied Materials & Interfaces, 2015, 7(31), 17471.
37 Chen W, Guo Z. Nanoscale, 2019, 11(33), 15448.
38 Shang L R, Wang Y T, Yu Y R, et al. Journal of Materials Chemistry A, 2017, 5(29), 15026.
39 Xie R X, Xu P D, Liu Y P, et al. Advanced Materials, 2018, 30(14), 1705082.
40 Liu Y F, Yang N, Li X, et al. Small, 2020, 16(9), 1901819.
41 Shang L R, Fu F F, Cheng Y, et al. Small, 2017, 13(4), 1600286.
42 Lorenceau L, Qur D. Journal of Fluid Mechanics,2004,510(510),29.
43 Chaudhury M K, Whitesides G M. Science, 1992, 256(5063), 1539.
44 Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504), 633.
45 Quéré D, Azzopardi M J, Delattre L. Langmuir, 1998, 14(8), 2213.
46 Hou Y P, Chen Y, Xue Y, et al. Langmuir, 2012, 28(10), 4737.
47 Dong H, Zheng Y M, Wang N, et al. Advanced Materials Interfaces, 2016, 3(11), 1500831.
48 Cui Y, Li D W, Bai H. Industrial & Engineering Chemistry Research, 2017, 56(17), 4887.
49 Li J, Guo Z G. Nanoscale, 2018, 10(29), 13814.
[1] 薛丽媛, 黄锋林, 徐文晴. 负载球状Zn/Al-LDH的壳聚糖海绵的制备及微纤维去除性能研究[J]. 材料导报, 2021, 35(z2): 554-557.
[2] 潘洁, 赵美蓉, 孙玉楷, 路敦强, CLARENCE Augustine T. H Tee, 宋乐, 郑叶龙. 液体弹珠的微流体操作及工程应用[J]. 材料导报, 2021, 35(23): 23001-23019.
[3] 熊静, 李亚丹, 伍亮, 肖刚, 王鑫, 梁莉萍, 乔琰, 鲁志松, 余玲. 基于亲水性可控棉线有效分离苏丹I和罗丹明B[J]. 材料导报, 2021, 35(20): 20166-20175.
[4] 薛丽媛, 黄锋林. 纺织品微纤维的研究现状与防治措施[J]. 材料导报, 2020, 34(Z2): 567-571.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed