Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1192-1196    https://doi.org/10.11896/j.issn.1005-023X.2018.07.022
  生物医用材料 |
可降解生物医用Zn-1Al合金的制备及性能研究
赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔
河北工业大学材料科学与工程学院,天津 300130
Fabrication and Investigation on Properties of Degradable Zn-1Al Alloy for Biomedical Applications
ZHAO Lichen, SONG Yuting, ZHANG Zhe, WANG Xin, WANG Tiebao, CUI Chunxiang
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 2297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以商业铸态纯锌和纯铝为原料,制备得到Zn-1Al铸态合金。利用光学显微镜和扫描电子显微镜观察Zn-1Al铸态合金的显微组织,利用万能试验机测定Zn-1Al铸态合金的压缩力学性能,利用模拟体液浸泡实验表征Zn-1Al铸态合金的生物降解性能和诱导Ca-P沉积能力。结果表明,向Zn中加入1%(质量分数)的合金元素Al后,铸态纯锌的显微组织明显细化,且Zn-1Al合金的压缩力学性能也较铸态纯锌明显提高。模拟体液浸泡实验结果表明铸态Zn-1Al合金在浸泡过程中降解速率与铸态纯锌相比未出现明显差别,但Zn-1Al合金能更有效地诱导Ca-P沉积。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立臣
宋玉婷
张喆
王新
王铁宝
崔春翔
关键词:  Zn-1Al合金  力学性能  Ca-P沉积  生物医用  可降解    
Abstract: As-cast Zn-1Al alloy was fabricated with commercially pure zinc and pure aluminum as raw materials. Microstructure of the as-cast Zn-1Al alloy was observed by optical microscopy and scanning electron microscopy, and the compressive mechanical properties were measured by a universal test machine. The biodegradable property and the ability to induce Ca-P precipitation of the as-cast Zn-1Al alloy were characterized by immersion tests in simulated body fluid. The results show that the microstructures of the as-cast Zn-1Al alloy were obviously refined by adding 1wt% Al element. In addition, the compressive mechanical properties of the as-cast Zn-1Al alloy were also enhanced compared with that of as-cast pure zinc. The immersion tests in simulated body fluid suggest that the as-cast Zn-1Al alloy has a similar degradable rate compared to as-cast pure Zn. However, Zn-1Al alloy can more efficiently induce Ca-P precipitation during immersion tests.
Key words:  Zn-1Al alloy    mechanical property    Ca-P precipitation    biomedical application    degradability
               出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG146.1  
  R318.08  
基金资助: 河北省高等学校科学技术研究项目(QN2014032);河北省自然科学基金(E2016202332)
通讯作者:  崔春翔:通信作者,博士,研究方向为金属基复合材料 E-mail:hutcui@hebut.edu.cn   
作者简介:  赵立臣:男,1972年生,博士,主要研究方向为生物医用金属材料
引用本文:    
赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔. 可降解生物医用Zn-1Al合金的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(7): 1192-1196.
ZHAO Lichen, SONG Yuting, ZHANG Zhe, WANG Xin, WANG Tiebao, CUI Chunxiang. Fabrication and Investigation on Properties of Degradable Zn-1Al Alloy for Biomedical Applications. Materials Reports, 2018, 32(7): 1192-1196.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.022  或          http://www.mater-rep.com/CN/Y2018/V32/I7/1192
1 Vojtch D, Kubásek J, Šerák J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515.
2 Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:1.
3 Murni N S, Dambatta M S, Yeap S K, et al. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells[J].Materials Science & Engineering C,2015,49:560.
4 Li H, Yang H, Zheng Y, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J].Materials & Design,2015,83:95.
5 Fosmire G J. Zinc toxicity[J].American Journal of Clinical Nutrition,1990,51(2):225.
6 Zhang Z, Gu B, Zhang W, et al. The enhanced characteristics of osteoblast adhesion to porous zinc-TiO2 coating prepared by plasma electrolytic oxidation[J].Applied Surface Science,2012,258(17):6504.
7 Moonga B S, Dempster D W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro[J].Journal of Bone and Mineral Research:the Official Journal of the American Society for Bone and Mineral Research,1995,10(3):453.
8 Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications[J].Materials and Design,2016,108:136.
9 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577.
10Kubásek J, Vojtěch D, Jablonská E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science & Engineering C,2016,58:24.
11Dambatta M S, Izman S, Kurniawan D, et al. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J].Materials & Design,2015,85:431.
12Liu X, Sun J, Qiu K, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444.
13 Ruan J M, Crant M H, Huang B Y. Approach of metal cytotoxicity (Ⅰ)[J].Materials Science and Engineering of Powder Metallurgy,2001,6(1):12(in Chinese).
阮建明,Crant M H,黄伯云.金属毒性研究(Ⅰ)[J].粉末冶金材料科学与工程,2001,6(1):12.
14 Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J].Biomaterials,2009,30(4):484.
15 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(5):2907.
16 Goo E, Park K T. Application of the von mises criterion to deformation twinning[J].Scripta Metallurgica,1989,23(7):1053.
17 Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid[J].Biomaterials,2005,26(10):1097.
18 Toworfe G K, Composto R J, Shapiro I M, et al. Nucleation and growth of calcium phosphate on amine-,carboxyl- and hydroxyl-silane self-assembled monolayers[J].Biomaterials,2006,27(4):631.
19 Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti[J].Acta Biomaterialia,2007,3(4):573.
20Yazdimamaghani M, Razavi M, Vashaee D, et al. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite[J].Materials Science & Engineering C,2015,49:436.
21Okido M, Kuroda K, Ishikawa M, et al. Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions[J].Solid State Ionics,2002,151:47.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed