Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050027-11    https://doi.org/10.11896/cldb.22050027
  高分子与聚合物基复合材料 |
低温容器用多层绝热材料的绝热性能研究进展
马晓勇1, 陈叔平1,*, 金树峰1, 朱鸣2, 王洋3, 熊珍艳3, 吴慧敏3, 于洋4, 王鑫1
1 兰州理工大学石油化工学院,兰州 730050
2 中国特种设备检测研究院,北京 100029
3 中车长江车辆有限公司,武汉 430200
4 西安交通大学动力工程多相流国家重点实验室,西安 710049
Advance in Research on Thermal Insulation Performance of Multilayer Insulation Materials for Cryogenic Vessels
MA Xiaoyong1, CHEN Shuping1,*, JIN Shufeng1, ZHU Ming2, WANG Yang3, XIONG Zhenyan3, WU Huimin3, YU Yang4, WANG Xin1
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 China Special Equipment Inspection and Research Institute, Beijing 100029, China
3 CRRC Yangtez Co., Ltd., Wuhan 430200, China
4 State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 15083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多层绝热材料被广泛应用于低温容器,其绝热性能是人们重点关注的性能指标。真空良好下,影响其绝热性能的因素包括夹层真空度、材料型号和种类、层数、层密度、等密度或变密度布置以及材料包覆工艺等;真空失效下,夹层气体压力、破空气体种类以及绝热结构参数等会对多层绝热材料的绝热性能产生影响。本文综述了多层绝热材料绝热性能的预测公式。应用Lockheed分析模型对不同边界温度、不同层数下的多层绝热材料的绝热性能进行预测,得到最佳层密度和最小热流密度;在层数一定的条件下,应用Layer-by-layer传热模型对等密度和变密度多层绝热方案的绝热性能进行预测,分析获得了两种实用性较高的多层绝热方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马晓勇
陈叔平
金树峰
朱鸣
王洋
熊珍艳
吴慧敏
于洋
王鑫
关键词:  多层绝热材料  绝热性能  变密度  低温容器  真空良好  真空失效    
Abstract: The thermal insulation performance of multilayer insulation materials widely employed in cryogenic vessels is an essential index used to determine their applicability. Under vacuum maintenance, the factors affecting the thermal insulation performance of multilayer insulation materials include vacuum pressure of annular space, variety and model of the materials used, layer number, layer density, uniform or variable density multilayer insulation, and material coating process. Under vacuum failure, the gas pressure of annular space, breaking gas type, and insulation structure parameters affect the thermal insulation performance of multilayer insulation materials. The prediction formulas of the thermal insulation performance of multilayer insulation materials are summed up. The Lockheed model is used to predict the thermal insulation performance of multilayer insulation materials under different boundary temperatures and total layers, obtaining the optimal layer densities and minimum heat fluxes. Under the condition of a certain and unchanged number of total layers, the Layer-by-layer model is used to predict the thermal insulation perfor-mance of uniform and variable density multilayer insulation with various layout schemes, obtaining two pragmatic layout schemes of variable density multilayer insulation on analysis.
Key words:  multilayer insulation material    thermal insulation performance    variable density    cryogenic vessel    vacuum maintenance    vacuum failure
发布日期:  2024-01-16
ZTFLH:  TB35  
基金资助: 甘肃省自然科学基金(21JR7RA269)
通讯作者:  陈叔平,兰州理工大学教授、博士研究生导师。1984年7月本科毕业于华东石油学院机械系石油矿场机械专业。1999年12月调至兰州理工大学过程装备与控制工程系,长期从事低温贮运技术与设备、低温传热技术、LNG技术、空间热防护技术等方面的科研工作。承担国家863计划项目、甘肃省科技重大专项、国家自然科学基金项目及企业合作项目60多项;科研成果获甘肃省科技成果二等奖、国家机械工业科技成果三等奖。申请专利12项,发表论文90余篇,包括Cryogenics、Journal of Aerospace Engineering、Nuclear Engineering and Technology、Vacuum、Journal of Shanghai Jiaotong University (Science)等。chensp@lut.edu.cn   
作者简介:  马晓勇,2015年6月、2018年6月分别于哈尔滨商业大学获得工学学士学位和工程硕士学位。现为兰州理工大学石油化工学院博士研究生,在陈叔平教授的指导下进行研究。目前主要研究领域为低温液体贮运及低温绝热技术。
引用本文:    
马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
MA Xiaoyong, CHEN Shuping, JIN Shufeng, ZHU Ming, WANG Yang, XIONG Zhenyan, WU Huimin, YU Yang, WANG Xin. Advance in Research on Thermal Insulation Performance of Multilayer Insulation Materials for Cryogenic Vessels. Materials Reports, 2024, 38(1): 22050027-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050027  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050027
1 Bi L S. Vacuum and Cryogenics, 1999, 5(3), 125 (in Chinese).
毕龙生. 真空与低温, 1999, 5(3), 125.
2 Bi L S. Vacuum and Cryogenics, 1999, 5(4), 187 (in Chinese).
毕龙生. 真空与低温, 1999, 5(4), 187.
3 Bi L S. Vacuum and Cryogenics, 2000, 6(1), 1 (in Chinese).
毕龙生. 真空与低温, 2000, 6(1), 1.
4 China Standardization Committee on Boilers and Pressure Vessels. GB/T18442. 1-2019 Static vacuum insulated cryogenic pressure vessels-Part1: General requirements, Standards Press of China, China, 2019, pp, 2 (in Chinese).
全国锅炉压力容器标准化技术委员会. GB/T18442. 1-2019固定式真空绝热深冷压力容器, 中国标准出版社, 2019, pp, 2.
5 Chen G B, Zhang P. Cryogenic insulation and heat transfer technology, Science Press, China, 2004, pp, 70 (in Chinese).
陈国邦, 张鹏, 低温绝热与传热技术, 科学出版社, 2004, pp, 70.
6 Singh D, Pandey A, Singh M K, et al. Journal of Instrumentation, 2020, 15, 1.
7 Sutheesh P M, Chollackal A. IOP Conference Series: Materials Science and Engineering, 2018, 396(1) , 012061.
8 McIntosh G E. Advance in Cryogenic Engineering, 1994, 39, 1683.
9 Wang M, Feng J Z, Jiang Y G, et al. Materials Reports, 2016, 30(S2), 461 (in Chinese).
王苗, 冯军宗, 姜勇刚, 等. 材料导报, 2016, 30(S2), 461.
10 ASTM Committee C16 on Thermal Insulation. C740/C740M-13 Standard guide for evacuated reflective insulation in cryogenic Service, ASTM International, 2014, pp, 2.
11 Xie G F. The research of the experiment and the heat transfer mechanism on the high-vacuum-multilayer-insulation (HVMLI) cryogenic tank after catastrophic loss of insulating vacuum, Ph. D, Thesis, Shanghai Jiao Tong University, China, 2011 (in Chinese).
谢高峰. 高真空多层绝热低温容器完全真空丧失实验及传热机理研究, 博士学位论文, 上海交通大学, 2011.
12 Zhu M. The insulation performance of complex insulation cryogenic tank and investigation on the thermal response after loss of insulation vacuum, Ph. D, Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese).
朱鸣. 复合绝热低温容器性能与真空丧失后的热响应研究, 博士学位论文, 上海交通大学, 2013.
13 Shen X. Study on an insulation performance testing system for high vacuum MLI, Master’s Thesis, Zhejiang University, China, 2013 (in Chinese).
沈铣, 高真空多层绝热材料绝热性能测试系统研究, 硕士学位论文, 浙江大学, 2013.
14 Xiong Z Y, Luo R Y, Wang B, et al. Cryogenics, 2020(4), 7 (in Chinese).
熊珍艳, 罗若尹, 王博, 等. 低温工程, 2020(4), 7.
15 Fesmire J E, Johnson W L. Cryogenics, 2018, 89, 58.
16 Chen G Q, Wen Y G. In: the 8th National Cryogenic Engineering Conference and 2007 Academic Exchange Conference of China Aerospace Cryogenic Professional Information Network. Beijing, China, 2007, pp, 390 (in Chinese).
陈光奇, 温永刚. 第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会. 北京, 2007, pp, 390.
17 He H M. Research on cryogenic insulation material and their properties, Master’s Thesis, Shaanxi University of Science and Technology, China, 2015 (in Chinese).
何红梅. 低温绝热纸材料及其性能的研究, 硕士学位论文, 陕西科技大学, 2015.
18 Fesmire J E, Johnson W L, Meneghelli B J, et al. In: Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC), Tucson, 2015.
19 Wei W, Wang R S. Natural Gas Industry, 2007, 27(6), 109 (in Chinese).
魏蔚, 汪荣顺. 天然气工业, 2007, 27(6), 109.
20 全国能源信息平台, 揭秘北汽福田首款液氢重卡, (2020-09-10)[2022-03-22], https://baijiahao.baidu.com/s?id=1677432679104896847&wfr=spider&for=pc.
21 Notardonato W U, Swanger A M, Fesmire J E, et al. IOP Conference Series: Materials Science and Engineering, 2017, 278(1) , 012012.
22 Al Ghafri S Z S, Swanger A, Jusko V, et al. Energies, 2022, 15(3), 1149.
23 Wei W, Wang R S. Cryogenics & Superconductivity, 2007, 35(1), 21 (in Chinese).
魏蔚, 汪荣顺. 低温与超导, 2007, 35(1), 21.
24 Rao A G, Yin F, Werij H G C. Aerospace, 2020, 7(12), 181.
25 Ratnakar R R, Gupta N, Zhang K, et al. International Journal of Hydrogen Energy, 2021, 46(47), 24149.
26 Cheng J J, Zhu J B, Li Z Q. Cryogenics & Superconductivity, 2013, 41(2), 11 (in Chinese).
程进杰, 朱建炳, 李正清. 低温与超导, 2013, 41(2), 11.
27 Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage, NASA TM-2004-213175, 2004.
28 Zheng J, Chen L, Wang J, et al. Energy Conversion and Management, 2019, 186, 526.
29 Wang Y, Li Y Z, Chen P W, et al. Cryogenics, 2016(5), 57 (in Chinese).
王莹, 厉彦忠, 陈鹏玮, 等. 低温工程, 2016(5), 57.
30 Wang T G, Li Y N, Yao S T, et al. Cryogenics & Superconductivity, 2014, 42(7), 6 (in Chinese).
王田刚, 李延娜, 姚淑婷, 等. 低温与超导, 2014, 42(7), 6.
31 Ye W L, Wang T G, Wang X J, et al. Cryogenics & Superconductivity, 2012, 40(12), 5 (in Chinese).
冶文莲, 王田刚, 王小军, 等. 低温与超导, 2012, 40(12), 5.
32 Wang B, Huang Y H, Li P, et al. Cryogenics, 2016, 80, 154.
33 Wei W, Li X, Wang R, et al. Applied Thermal Engineering, 2009, 29(5-6), 1264.
34 Johnson W L, Fesmire J E. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC, New York, 2010, pp, 905.
35 Yang H S, Kim D L, Lee B S, et al. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC, New York, 2006, pp, 189.
36 China Standardization Committee on Gas Cylinders. GB/T34510-2017 Liquefied natural gas cylinders for vehicles, Standards Press of China, China, 2017, pp, 6 (in Chinese).
全国气瓶标准化技术委员会. GB/T34510-2017汽车用液化天然气气瓶, 中国标准出版社, 2017, pp, 6.
37 Wang X, Chen S P, Zhu M, et al. Cryogenics & Superconductivity, 2021, 49(12), 1 (in Chinese).
王鑫, 陈叔平, 朱鸣, 等. 低温与超导, 2021, 49(12), 1.
38 Shi S B, Chen S P, Zhu M, et al. Pressure Vessel Technology, 2021, 38(10), 16 (in Chinese).
石顺宝, 陈叔平, 朱鸣, 等. 压力容器, 2021, 38(10), 16.
39 Zhu M, Wang R S. Cryogenics, 2012, 52(7-9), 331.
40 Sun P J, Wu J Y, Zhang P, et al. Cryogenics, 2009, 49(12), 719.
41 Zhu M, Yu Z J, Xu B, et al. Cryogenics, 2012(1), 16 (in Chinese).
朱鸣, 于忠杰, 徐彬, 等. 低温工程, 2012(1), 16.
42 Zhu M, Xie G F, Wang R S. Advanced Material Research, 2011, 354-355, 294.
43 Wang B, Luo R, Chen H, et al. Applied Thermal Engineering, 2021, 187, 116569.
44 王博, 何远新, 罗若尹, 等. 中国专利, CN111219598A, 2020.
45 Fu X L. Low Temperature and Specialty Gases, 1994(2), 14 (in Chinese).
符锡理. 低温与特气, 1994(2), 14.
46 Zhu G X. Cryogenic Technology, 1983(2), 1 (in Chinese).
朱公先. 深冷技术, 1983(2), 1.
47 Zhang A, Yan C J, Chen L, et al. Vacuum and Cryogenics, 2013, 19(2), 90 (in Chinese).
张安, 闫春杰, 陈联, 等. 真空与低温, 2013, 19(2), 90.
48 Ye W L, Wang L H, Wang T G, et al. Vacuum and Cryogenics, 2014, 20(4), 209 (in Chinese).
冶文莲, 王丽红, 王田刚, 等. 真空与低温, 2014, 20(4), 209.
49 Bapat S L, Narayankhedkar K G, Lukose T P. Cryogenics, 1990, 30(8), 700.
50 Johnson W L. Thermal performance of cryogenic multilayer insulation at various layer spacings, Master’s Thesis, University of Central Florida, USA, 2010.
51 Kawasaki H, Okazaki S, Sugita H, et al. In: 42nd International Confe-rence on Environmental Systems, San Diego, 2012.
52 Johnson W L. In: Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC, New York, 2010, pp, 804.
53 Yu Y. Working mechanism and performance optimization of getters in high-vacuum-multilayer-insulation equipment, Master’s Thesis, Lanzhou University of Technology, China, 2021 (in Chinese).
于洋. 吸气剂在高真空多层绝热设备中工作机理及性能优化研究, 硕士学位论文, 兰州理工大学, 2021.
54 Liu X. Experimental study on outgassing performance of glass fiber paper, Master’s Thesis, China Jiliang University, China, 2019 (in Chinese)
刘霄. 玻璃纤维纸放气性能的试验研究, 硕士学位论文, 中国计量大学, 2019.
55 中华人民共和国中央人民政府, 继往开来, 开启全球应对气候变化新征程——在气候雄心峰会上的讲话, (2020-12-12)[2022-04-04], http://www.gov.cn/gongbao/content/2020/content_5570055.htm.
[1] 于洋, 朱鸣, 陈叔平, 古纯霖, 张波, 黄宇巍. 除氢材料在高真空多层绝热设备中维持高真空行为研究[J]. 材料导报, 2021, 35(14): 14035-14039.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed