Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22030194-9    https://doi.org/10.11896/cldb.22030194
  无机非金属及其复合材料 |
基于硅/二维层状材料异质结的红外光电探测器研究进展
贺亦菲1, 杨德仁1,2, 皮孝东1,2,*
1 浙江大学材料科学与工程学院硅材料国家重点实验室,杭州 310027
2 浙江大学杭州国际科创中心,杭州311200
Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials
HE Yifei1, YANG Deren1,2, PI Xiaodong1,2,*
1 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
下载:  全 文 ( PDF ) ( 27333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 红外光是一种频率介于微波和可见光范围之间的电磁波,在光通信、人工智能、医用治疗、军事探测和航空航天等领域具有广泛的应用。硅的带隙为1.12 eV,导致硅基光电探测器的截止波长短(约1.1 mm)。近年来,研究发现了新型二维层状材料,它们具有带隙可调、载流子迁移率高、光谱响应宽、暗电流低、稳定性高以及制备工艺与互补金属氧化物半导体(Complementary metal oxide semiconductor,CMOS)工艺兼容等诸多优点,引起了研究人员的广泛关注。通过将硅与二维层状材料结合,能够有效地将硅基光电探测器的探测波段向波长超过1.1 mm的红外光波段拓展。本文着重介绍了近年来可探测波长超过传统硅光电探测器的基于硅/二维层状材料异质结的光电探测器在近红外和中红外光波段的研究进展并展望了其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺亦菲
杨德仁
皮孝东
关键词:    二维层状材料  异质结  红外光电探测器    
Abstract: Infrared light, an electromagnetic wave with a frequency range that lies between that of microwave and visible light, is widely used in the fields of optical communication, artificial intelligence, medical treatment, military detection, and aerospace. Infrared light is difficult to detect because it is invisible to the human eye. The cutoff wavelength (about 1.1 mm) of silicon-based photodetectors are limited by the bandgap of silicon (about 1.12 eV). In recent years, researchers have discovered novel two-dimensional layered materials with a tunable bandgap, high carrier mobility, wide spectral response, low dark current, and high stability. Additionally, their micro-nano processing technology is compatible with CMOS technology. Combining silicon with two-dimensional layered materials can efficiently expand the detection band of silicon photodetectors to the infrared light band with wavelengths exceeding 1.1 mm. In this review, we focus on the current reports related to silicon/two-dimensional layered materials heterojunctions. We introduce the application of silicon heterojunction infrared photodetectors with two-dimensional materials, such graphene, black phosphorus, and two-dimensional transition metal chalcogenides; we also present the performance of these devices. Finally, based on recent research, the outlook on heterojunction infrared photodetectors based on silicon/two-dimensional layered material is presented. It is believed that heterojunction infrared photodetectors based on silicon/two-dimensional material have the potential to realize advanced applications in the future.
Key words:  silicon    two-dimensional layered material    heterojunction    infrared photodetector
发布日期:  2024-01-16
ZTFLH:  TN215  
通讯作者:  皮孝东,浙江大学材料科学与工程学院、硅材料国家重点实验室和浙江大学杭州国际科创中心先进半导体研究室教授、博士研究生导师。1997年武汉理工大学材料科学与工程学院本科毕业,2000年浙江大学材料科学与工程学院硕士毕业,2004年英国巴斯大学物理系博士毕业后先后于加拿大麦克马斯特大学、美国明尼苏达大学开展研究工作。2008年进入浙江大学材料科学与工程学院和硅材料国家重点实验室工作至今。目前主要从事硅基光电子材料与器件、硅基光增益纳米结构材料与器件、表面等离激元高效光热转换机理、器件及太阳能利用等方面的研究工作。在Advanced Materials、Nano Energy、ACS Nano、Nano Letters、Advanced Functional Materials等期刊上发表过文章。xdpi@zju.edu.cn   
作者简介:  贺亦菲,2019年6月于四川大学获得工学学士学位,2022年6月毕业于浙江大学材料学院硅材料国家重点实验室,获硕士学位,在皮孝东教授的指导下进行研究。主要研究领域为硅基二维材料光电探测器。
引用本文:    
贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
HE Yifei, YANG Deren, PI Xiaodong. Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials. Materials Reports, 2024, 38(1): 22030194-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030194  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22030194
1 Gan X T, Shiue R J, Gao Y D, et al. Nature Photonics, 2013, 7, 883.
2 Shiue R J, Gao Y D, Wang Y F, et al. Nano Letters, 2015, 15, 7288.
3 Yao Y, Shankar R, Rauter P, et al. Nano Letters, 2014, 14, 3749.
4 Ni Z Y, Ma L L, Du S C, et al. ACS Nano, 2017, 11, 9854.
5 Wei J X, Li Y, Wang L, et al. Nature Communications, 2020, 11, 6404.
6 Xia F N, Wang H, Jia Y C. Nature Communications, 2014, 5, 4458.
7 Guo Q S, Pospischil A, Bhuiyan M, et al. Nano Letters, 2016, 16, 4648.
8 Deckoff-Jones S, Lin H T, Kita D, et al. Journal of Optics, 2018, 20, 044004.
9 Buscema M, Groenendijk D J, Blanter S I, et al. Nano Letters, 2014, 14, 3347.
10 Venuthurumilli P K, Ye P D, Xu X F. ACS Nano, 2018, 12, 4861.
11 Zhang Y S, Wang S W, Chen S L, et al. Advanced Materials, 2020, 32, e1808319.
12 Xiao P, Mao J, Ding K, et al. Advanced Materials, 2018, 30, 1801729.
13 Wang Z Y, Zhang X W, Wu D, et al. Journal of Materials Chemistry C, 2020, 8, 6877.
14 Zhao Y D, Qiao J S, Yu Z H, et al. Advanced Materials, 2017, 29, 1604230.
15 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907.
16 Liang Q J, Wang Q X, Zhang Q, et al. Advanced Materials, 2019, 31, 1260.
17 Zhao Y, Qiao J S, Yu P, et al. Advanced Materials, 2016, 28, 2399.
18 Dong Z, Yu W Z, Zhang L B, et al. ACS Nano, 2021, 15(12), 20403.
19 Wang Y, Li Y F, Chen Z F. Journal of Materials Chemistry C, 2015, 3, 9603.
20 Oyedele A D, Yang S Z, Feng T L, et al. Journal of the American Che-mical Society, 2019, 141, 8928.
21 Li G, Yin S Q, Tan C Y, et al. Advanced Functional Materials, 2021, 31, 2104787.
22 Oyedele A D, Yang S Z, Liang L B, et al. Journal of the American Chemical Society, 2017, 139, 14090.
23 Venkatesan A, Rathi S, Kim Y, et al. Materials Science in Semiconductor Processing, 2020, 115, 105102.
24 Wang C X, Dong Y, Lu Z J, et al. Sensors and Actuators A: Physical, 2019, 291, 87.
25 Wang Y X, Qiu G, Wang R X, et al. Nature Electronics, 2018, 1, 228.
26 Wang X M, Cheng Z Z, Xu K, et al. Nature Photonics, 2013, 7, 888.
27 Goykhman I, Sassi U, Desiatov B, et al. Nano Letters, 2016, 16, 3005.
28 Casalino M, Sassi U, Goykhman I, et al. ACS Nano, 2017, 11, 10955.
29 Jana S, Mukherjee S, Bhaktha B N S, et al. ACS Applied Materials & Interfaces, 2022, 14, 1699.
30 Yuan L, Chung T F, Kuc A, et al. Science Advances, 2019, 4, e1700324.
31 Zhou Y Q, Tan H J, Sheng Y W, et al. ACS Nano, 2018, 12, 4669.
32 Wu E P, Wu D, Jia C, et al. ACS Photonics, 2019, 6, 565.
33 Mao J, Yu Y Q, Wang L, et al. Advanced Science, 2016, 3, 1600018.
34 Lu Z J, Xu Y, Yu Y Q, et al. Advanced Functional Materials, 2020, 30, 1907951.
35 Nidhi, Jakhar A, Uddin W, et al. ACS Applied Nano Material, 2020, 3, 9401.
36 Zeng L H, Wu D, Jie J S, et al. Advanced Materials, 2020, 32(52), 2004412.
37 Wu D, Jia C, Shi F H, et al. Journal of Materials Chemistry A, 2020, 8, 3632.
38 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907.
39 Lu J T, Zheng Z Q, Yao J D, et al. Small, 2019, 15, 1904912.
40 Du S C, Ni Z Y, Liu X M, et al. In: 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, 2017, pp.233.
41 He T Y, Lan C Y, Zhou S H, et al. Journal of Materials Chemistry C, 2021, 9, 3846.
42 Cao Y, Zhu J X, Xu J, et al. Small, 2014, 10, 2345.
43 Wu D, Guo C G, Wang Z Y, et al. Nanoscale, 2021, 13, 13550.
44 John J W, Dhyani V, Maity S, et al. Nanotechnology, 2020, 31, 455208.
45 Aftab S, Samiya M, Liao W G, et al. Journal of Materials Chemistry C, 2021, 9, 3998.
46 Zeng L H, Lin S H, Lou Z H, et al. NPG Asia Materials, 2018, 10, 352.
47 Liang F X, Zhao X Y, Jiang J J, et al. Small, 2019, 15, 1903831.
48 Zhou S, Pi X D, Ni Z Y, et al. ACS Nano, 2015, 9, 378.
49 Yu T, Wang F, Xu Y, et al. Advanced Materials, 2016, 28, 4912.
50 Nguyen-Huu N, Cada M, Ma Y, et al. Journal of Physics D: Applied Physics, 2017, 50, 205105.
51 Wang A H, Hsu P F, Chen Y B, et al. Science China Technological Sciences, 2010, 53, 2207.
52 Low T, Avouris P. ACS Nano, 2014, 8, 1086.
53 Fang Z Y, Liu Z, Wang Y M, et al. Nano Letters, 2012, 12, 3808.
54 Youngblood N, Chen C, Koester S J, et al. Nature Photonics, 2015, 9, 247.
55 Connolly C. Assembly Automation, 2005, 25, 191.
56 Wu P S, He T, Zhu H, et al. InfoMat, 2022, 4, e12275.
57 Liao K H, Lei P X, Tu M L, et al. ACS Applied Materials & Interfaces, 2021, 13, 32606.
58 Seo S, Lee J J, Lee H J, et al. ACS Applied Electronic Materials, 2020, 2, 371.
59 Lee G, Baek J H, Ren F, et al. Small, 2021, 17, 2100640.
60 Wang S Y, Zhang D W, Zhou P. Science Bulletin, 2019, 64, 1056.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[3] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[4] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[5] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[6] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[7] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[8] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[9] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[10] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[11] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[12] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[13] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[14] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[15] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed