Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials
HE Yifei1, YANG Deren1,2, PI Xiaodong1,2,*
1 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 2 Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
Abstract: Infrared light, an electromagnetic wave with a frequency range that lies between that of microwave and visible light, is widely used in the fields of optical communication, artificial intelligence, medical treatment, military detection, and aerospace. Infrared light is difficult to detect because it is invisible to the human eye. The cutoff wavelength (about 1.1 mm) of silicon-based photodetectors are limited by the bandgap of silicon (about 1.12 eV). In recent years, researchers have discovered novel two-dimensional layered materials with a tunable bandgap, high carrier mobility, wide spectral response, low dark current, and high stability. Additionally, their micro-nano processing technology is compatible with CMOS technology. Combining silicon with two-dimensional layered materials can efficiently expand the detection band of silicon photodetectors to the infrared light band with wavelengths exceeding 1.1 mm. In this review, we focus on the current reports related to silicon/two-dimensional layered materials heterojunctions. We introduce the application of silicon heterojunction infrared photodetectors with two-dimensional materials, such graphene, black phosphorus, and two-dimensional transition metal chalcogenides; we also present the performance of these devices. Finally, based on recent research, the outlook on heterojunction infrared photodetectors based on silicon/two-dimensional layered material is presented. It is believed that heterojunction infrared photodetectors based on silicon/two-dimensional material have the potential to realize advanced applications in the future.
贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
HE Yifei, YANG Deren, PI Xiaodong. Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials. Materials Reports, 2024, 38(1): 22030194-9.
1 Gan X T, Shiue R J, Gao Y D, et al. Nature Photonics, 2013, 7, 883. 2 Shiue R J, Gao Y D, Wang Y F, et al. Nano Letters, 2015, 15, 7288. 3 Yao Y, Shankar R, Rauter P, et al. Nano Letters, 2014, 14, 3749. 4 Ni Z Y, Ma L L, Du S C, et al. ACS Nano, 2017, 11, 9854. 5 Wei J X, Li Y, Wang L, et al. Nature Communications, 2020, 11, 6404. 6 Xia F N, Wang H, Jia Y C. Nature Communications, 2014, 5, 4458. 7 Guo Q S, Pospischil A, Bhuiyan M, et al. Nano Letters, 2016, 16, 4648. 8 Deckoff-Jones S, Lin H T, Kita D, et al. Journal of Optics, 2018, 20, 044004. 9 Buscema M, Groenendijk D J, Blanter S I, et al. Nano Letters, 2014, 14, 3347. 10 Venuthurumilli P K, Ye P D, Xu X F. ACS Nano, 2018, 12, 4861. 11 Zhang Y S, Wang S W, Chen S L, et al. Advanced Materials, 2020, 32, e1808319. 12 Xiao P, Mao J, Ding K, et al. Advanced Materials, 2018, 30, 1801729. 13 Wang Z Y, Zhang X W, Wu D, et al. Journal of Materials Chemistry C, 2020, 8, 6877. 14 Zhao Y D, Qiao J S, Yu Z H, et al. Advanced Materials, 2017, 29, 1604230. 15 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907. 16 Liang Q J, Wang Q X, Zhang Q, et al. Advanced Materials, 2019, 31, 1260. 17 Zhao Y, Qiao J S, Yu P, et al. Advanced Materials, 2016, 28, 2399. 18 Dong Z, Yu W Z, Zhang L B, et al. ACS Nano, 2021, 15(12), 20403. 19 Wang Y, Li Y F, Chen Z F. Journal of Materials Chemistry C, 2015, 3, 9603. 20 Oyedele A D, Yang S Z, Feng T L, et al. Journal of the American Che-mical Society, 2019, 141, 8928. 21 Li G, Yin S Q, Tan C Y, et al. Advanced Functional Materials, 2021, 31, 2104787. 22 Oyedele A D, Yang S Z, Liang L B, et al. Journal of the American Chemical Society, 2017, 139, 14090. 23 Venkatesan A, Rathi S, Kim Y, et al. Materials Science in Semiconductor Processing, 2020, 115, 105102. 24 Wang C X, Dong Y, Lu Z J, et al. Sensors and Actuators A: Physical, 2019, 291, 87. 25 Wang Y X, Qiu G, Wang R X, et al. Nature Electronics, 2018, 1, 228. 26 Wang X M, Cheng Z Z, Xu K, et al. Nature Photonics, 2013, 7, 888. 27 Goykhman I, Sassi U, Desiatov B, et al. Nano Letters, 2016, 16, 3005. 28 Casalino M, Sassi U, Goykhman I, et al. ACS Nano, 2017, 11, 10955. 29 Jana S, Mukherjee S, Bhaktha B N S, et al. ACS Applied Materials & Interfaces, 2022, 14, 1699. 30 Yuan L, Chung T F, Kuc A, et al. Science Advances, 2019, 4, e1700324. 31 Zhou Y Q, Tan H J, Sheng Y W, et al. ACS Nano, 2018, 12, 4669. 32 Wu E P, Wu D, Jia C, et al. ACS Photonics, 2019, 6, 565. 33 Mao J, Yu Y Q, Wang L, et al. Advanced Science, 2016, 3, 1600018. 34 Lu Z J, Xu Y, Yu Y Q, et al. Advanced Functional Materials, 2020, 30, 1907951. 35 Nidhi, Jakhar A, Uddin W, et al. ACS Applied Nano Material, 2020, 3, 9401. 36 Zeng L H, Wu D, Jie J S, et al. Advanced Materials, 2020, 32(52), 2004412. 37 Wu D, Jia C, Shi F H, et al. Journal of Materials Chemistry A, 2020, 8, 3632. 38 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907. 39 Lu J T, Zheng Z Q, Yao J D, et al. Small, 2019, 15, 1904912. 40 Du S C, Ni Z Y, Liu X M, et al. In: 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, 2017, pp.233. 41 He T Y, Lan C Y, Zhou S H, et al. Journal of Materials Chemistry C, 2021, 9, 3846. 42 Cao Y, Zhu J X, Xu J, et al. Small, 2014, 10, 2345. 43 Wu D, Guo C G, Wang Z Y, et al. Nanoscale, 2021, 13, 13550. 44 John J W, Dhyani V, Maity S, et al. Nanotechnology, 2020, 31, 455208. 45 Aftab S, Samiya M, Liao W G, et al. Journal of Materials Chemistry C, 2021, 9, 3998. 46 Zeng L H, Lin S H, Lou Z H, et al. NPG Asia Materials, 2018, 10, 352. 47 Liang F X, Zhao X Y, Jiang J J, et al. Small, 2019, 15, 1903831. 48 Zhou S, Pi X D, Ni Z Y, et al. ACS Nano, 2015, 9, 378. 49 Yu T, Wang F, Xu Y, et al. Advanced Materials, 2016, 28, 4912. 50 Nguyen-Huu N, Cada M, Ma Y, et al. Journal of Physics D: Applied Physics, 2017, 50, 205105. 51 Wang A H, Hsu P F, Chen Y B, et al. Science China Technological Sciences, 2010, 53, 2207. 52 Low T, Avouris P. ACS Nano, 2014, 8, 1086. 53 Fang Z Y, Liu Z, Wang Y M, et al. Nano Letters, 2012, 12, 3808. 54 Youngblood N, Chen C, Koester S J, et al. Nature Photonics, 2015, 9, 247. 55 Connolly C. Assembly Automation, 2005, 25, 191. 56 Wu P S, He T, Zhu H, et al. InfoMat, 2022, 4, e12275. 57 Liao K H, Lei P X, Tu M L, et al. ACS Applied Materials & Interfaces, 2021, 13, 32606. 58 Seo S, Lee J J, Lee H J, et al. ACS Applied Electronic Materials, 2020, 2, 371. 59 Lee G, Baek J H, Ren F, et al. Small, 2021, 17, 2100640. 60 Wang S Y, Zhang D W, Zhou P. Science Bulletin, 2019, 64, 1056.