Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22030194-9    https://doi.org/10.11896/cldb.22030194
  无机非金属及其复合材料 |
基于硅/二维层状材料异质结的红外光电探测器研究进展
贺亦菲1, 杨德仁1,2, 皮孝东1,2,*
1 浙江大学材料科学与工程学院硅材料国家重点实验室,杭州 310027
2 浙江大学杭州国际科创中心,杭州311200
Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials
HE Yifei1, YANG Deren1,2, PI Xiaodong1,2,*
1 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
下载:  全 文 ( PDF ) ( 27333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 红外光是一种频率介于微波和可见光范围之间的电磁波,在光通信、人工智能、医用治疗、军事探测和航空航天等领域具有广泛的应用。硅的带隙为1.12 eV,导致硅基光电探测器的截止波长短(约1.1 mm)。近年来,研究发现了新型二维层状材料,它们具有带隙可调、载流子迁移率高、光谱响应宽、暗电流低、稳定性高以及制备工艺与互补金属氧化物半导体(Complementary metal oxide semiconductor,CMOS)工艺兼容等诸多优点,引起了研究人员的广泛关注。通过将硅与二维层状材料结合,能够有效地将硅基光电探测器的探测波段向波长超过1.1 mm的红外光波段拓展。本文着重介绍了近年来可探测波长超过传统硅光电探测器的基于硅/二维层状材料异质结的光电探测器在近红外和中红外光波段的研究进展并展望了其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺亦菲
杨德仁
皮孝东
关键词:    二维层状材料  异质结  红外光电探测器    
Abstract: Infrared light, an electromagnetic wave with a frequency range that lies between that of microwave and visible light, is widely used in the fields of optical communication, artificial intelligence, medical treatment, military detection, and aerospace. Infrared light is difficult to detect because it is invisible to the human eye. The cutoff wavelength (about 1.1 mm) of silicon-based photodetectors are limited by the bandgap of silicon (about 1.12 eV). In recent years, researchers have discovered novel two-dimensional layered materials with a tunable bandgap, high carrier mobility, wide spectral response, low dark current, and high stability. Additionally, their micro-nano processing technology is compatible with CMOS technology. Combining silicon with two-dimensional layered materials can efficiently expand the detection band of silicon photodetectors to the infrared light band with wavelengths exceeding 1.1 mm. In this review, we focus on the current reports related to silicon/two-dimensional layered materials heterojunctions. We introduce the application of silicon heterojunction infrared photodetectors with two-dimensional materials, such graphene, black phosphorus, and two-dimensional transition metal chalcogenides; we also present the performance of these devices. Finally, based on recent research, the outlook on heterojunction infrared photodetectors based on silicon/two-dimensional layered material is presented. It is believed that heterojunction infrared photodetectors based on silicon/two-dimensional material have the potential to realize advanced applications in the future.
Key words:  silicon    two-dimensional layered material    heterojunction    infrared photodetector
发布日期:  2024-01-16
ZTFLH:  TN215  
通讯作者:  皮孝东,浙江大学材料科学与工程学院、硅材料国家重点实验室和浙江大学杭州国际科创中心先进半导体研究室教授、博士研究生导师。1997年武汉理工大学材料科学与工程学院本科毕业,2000年浙江大学材料科学与工程学院硕士毕业,2004年英国巴斯大学物理系博士毕业后先后于加拿大麦克马斯特大学、美国明尼苏达大学开展研究工作。2008年进入浙江大学材料科学与工程学院和硅材料国家重点实验室工作至今。目前主要从事硅基光电子材料与器件、硅基光增益纳米结构材料与器件、表面等离激元高效光热转换机理、器件及太阳能利用等方面的研究工作。在Advanced Materials、Nano Energy、ACS Nano、Nano Letters、Advanced Functional Materials等期刊上发表过文章。xdpi@zju.edu.cn   
作者简介:  贺亦菲,2019年6月于四川大学获得工学学士学位,2022年6月毕业于浙江大学材料学院硅材料国家重点实验室,获硕士学位,在皮孝东教授的指导下进行研究。主要研究领域为硅基二维材料光电探测器。
引用本文:    
贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
HE Yifei, YANG Deren, PI Xiaodong. Research Progress on Heterojunction Infrared Photodetectors Based on Silicon/Two-dimensional Layered Materials. Materials Reports, 2024, 38(1): 22030194-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030194  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22030194
1 Gan X T, Shiue R J, Gao Y D, et al. Nature Photonics, 2013, 7, 883.
2 Shiue R J, Gao Y D, Wang Y F, et al. Nano Letters, 2015, 15, 7288.
3 Yao Y, Shankar R, Rauter P, et al. Nano Letters, 2014, 14, 3749.
4 Ni Z Y, Ma L L, Du S C, et al. ACS Nano, 2017, 11, 9854.
5 Wei J X, Li Y, Wang L, et al. Nature Communications, 2020, 11, 6404.
6 Xia F N, Wang H, Jia Y C. Nature Communications, 2014, 5, 4458.
7 Guo Q S, Pospischil A, Bhuiyan M, et al. Nano Letters, 2016, 16, 4648.
8 Deckoff-Jones S, Lin H T, Kita D, et al. Journal of Optics, 2018, 20, 044004.
9 Buscema M, Groenendijk D J, Blanter S I, et al. Nano Letters, 2014, 14, 3347.
10 Venuthurumilli P K, Ye P D, Xu X F. ACS Nano, 2018, 12, 4861.
11 Zhang Y S, Wang S W, Chen S L, et al. Advanced Materials, 2020, 32, e1808319.
12 Xiao P, Mao J, Ding K, et al. Advanced Materials, 2018, 30, 1801729.
13 Wang Z Y, Zhang X W, Wu D, et al. Journal of Materials Chemistry C, 2020, 8, 6877.
14 Zhao Y D, Qiao J S, Yu Z H, et al. Advanced Materials, 2017, 29, 1604230.
15 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907.
16 Liang Q J, Wang Q X, Zhang Q, et al. Advanced Materials, 2019, 31, 1260.
17 Zhao Y, Qiao J S, Yu P, et al. Advanced Materials, 2016, 28, 2399.
18 Dong Z, Yu W Z, Zhang L B, et al. ACS Nano, 2021, 15(12), 20403.
19 Wang Y, Li Y F, Chen Z F. Journal of Materials Chemistry C, 2015, 3, 9603.
20 Oyedele A D, Yang S Z, Feng T L, et al. Journal of the American Che-mical Society, 2019, 141, 8928.
21 Li G, Yin S Q, Tan C Y, et al. Advanced Functional Materials, 2021, 31, 2104787.
22 Oyedele A D, Yang S Z, Liang L B, et al. Journal of the American Chemical Society, 2017, 139, 14090.
23 Venkatesan A, Rathi S, Kim Y, et al. Materials Science in Semiconductor Processing, 2020, 115, 105102.
24 Wang C X, Dong Y, Lu Z J, et al. Sensors and Actuators A: Physical, 2019, 291, 87.
25 Wang Y X, Qiu G, Wang R X, et al. Nature Electronics, 2018, 1, 228.
26 Wang X M, Cheng Z Z, Xu K, et al. Nature Photonics, 2013, 7, 888.
27 Goykhman I, Sassi U, Desiatov B, et al. Nano Letters, 2016, 16, 3005.
28 Casalino M, Sassi U, Goykhman I, et al. ACS Nano, 2017, 11, 10955.
29 Jana S, Mukherjee S, Bhaktha B N S, et al. ACS Applied Materials & Interfaces, 2022, 14, 1699.
30 Yuan L, Chung T F, Kuc A, et al. Science Advances, 2019, 4, e1700324.
31 Zhou Y Q, Tan H J, Sheng Y W, et al. ACS Nano, 2018, 12, 4669.
32 Wu E P, Wu D, Jia C, et al. ACS Photonics, 2019, 6, 565.
33 Mao J, Yu Y Q, Wang L, et al. Advanced Science, 2016, 3, 1600018.
34 Lu Z J, Xu Y, Yu Y Q, et al. Advanced Functional Materials, 2020, 30, 1907951.
35 Nidhi, Jakhar A, Uddin W, et al. ACS Applied Nano Material, 2020, 3, 9401.
36 Zeng L H, Wu D, Jie J S, et al. Advanced Materials, 2020, 32(52), 2004412.
37 Wu D, Jia C, Shi F H, et al. Journal of Materials Chemistry A, 2020, 8, 3632.
38 Wu D, Guo J W, Du J, et al. ACS Nano, 2019, 13, 9907.
39 Lu J T, Zheng Z Q, Yao J D, et al. Small, 2019, 15, 1904912.
40 Du S C, Ni Z Y, Liu X M, et al. In: 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, 2017, pp.233.
41 He T Y, Lan C Y, Zhou S H, et al. Journal of Materials Chemistry C, 2021, 9, 3846.
42 Cao Y, Zhu J X, Xu J, et al. Small, 2014, 10, 2345.
43 Wu D, Guo C G, Wang Z Y, et al. Nanoscale, 2021, 13, 13550.
44 John J W, Dhyani V, Maity S, et al. Nanotechnology, 2020, 31, 455208.
45 Aftab S, Samiya M, Liao W G, et al. Journal of Materials Chemistry C, 2021, 9, 3998.
46 Zeng L H, Lin S H, Lou Z H, et al. NPG Asia Materials, 2018, 10, 352.
47 Liang F X, Zhao X Y, Jiang J J, et al. Small, 2019, 15, 1903831.
48 Zhou S, Pi X D, Ni Z Y, et al. ACS Nano, 2015, 9, 378.
49 Yu T, Wang F, Xu Y, et al. Advanced Materials, 2016, 28, 4912.
50 Nguyen-Huu N, Cada M, Ma Y, et al. Journal of Physics D: Applied Physics, 2017, 50, 205105.
51 Wang A H, Hsu P F, Chen Y B, et al. Science China Technological Sciences, 2010, 53, 2207.
52 Low T, Avouris P. ACS Nano, 2014, 8, 1086.
53 Fang Z Y, Liu Z, Wang Y M, et al. Nano Letters, 2012, 12, 3808.
54 Youngblood N, Chen C, Koester S J, et al. Nature Photonics, 2015, 9, 247.
55 Connolly C. Assembly Automation, 2005, 25, 191.
56 Wu P S, He T, Zhu H, et al. InfoMat, 2022, 4, e12275.
57 Liao K H, Lei P X, Tu M L, et al. ACS Applied Materials & Interfaces, 2021, 13, 32606.
58 Seo S, Lee J J, Lee H J, et al. ACS Applied Electronic Materials, 2020, 2, 371.
59 Lee G, Baek J H, Ren F, et al. Small, 2021, 17, 2100640.
60 Wang S Y, Zhang D W, Zhou P. Science Bulletin, 2019, 64, 1056.
[1] 何承绪, 马光, 毛航银, 祝志祥, 韩钰, 高洁, 张一航, 胡卓超. 耐热型取向硅钢涂层特性与磁性能[J]. 材料导报, 2024, 38(1): 22030301-5.
[2] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[3] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[4] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[5] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[6] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[7] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[8] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[9] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[10] 郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
[11] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[12] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[13] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[14] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[15] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed