Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 51-59    https://doi.org/10.11896/j.issn.1005-023X.2017.019.007
  材料综述 |
新型多孔材料在惰性气体Xe/Kr分离中的应用*
刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳
中国工程物理研究院核物理与化学研究所,绵阳621900
Application of Novel Porous Materials in Noble Gas Xe/Kr Separation
LIU Boyu, GONG Youjin, LIU Qiang, LI Wei, WU Xiaonan, XIONG Shunshun, HU Sheng, WANG Xiaolin
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
下载:  全 文 ( PDF ) ( 1759KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 惰性气体氙与氪的分离在大气放射性核素监测、惰性气体工业制备和乏燃料处理等领域中均有重要应用。常规的方法是利用低温精馏将氙与氪从大气中分离,需要耗费大量能源,成本高。因此,作为替代方法在常温下通过多孔材料高效吸附分离氙与氪具有重要意义。近年来发展的以金属有机框架材料、多孔有机分子笼材料等为代表的新型多孔材料在惰性气体氙与氪的分离中展现出了优异的性能与良好的应用前景。系统地综述了新型多孔材料在Xe/Kr分离中的研究进展,从计算模拟在Xe/Kr分离研究中的应用、高浓度氙/氪分离研究与极低浓度Xe/Kr分离研究3个方面进行论述与总结,最后对未来研究趋势进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘博煜
龚有进
刘强
李伟
吴晓楠
熊顺顺
胡胜
汪小琳
关键词:  惰性气体  吸附  分离  新型多孔材料  金属有机框架材料    
Abstract: The separation of xenon (Xe) and krypton (Kr) is very important for atmospheric radioactive gases radionuclide monitoring, industrial production of noble gases and spent nuclear fuel reprocessing. The conventional, cryogenic methods are used to extract xenon and krypton from air, but this is highly energy and capital intensive. Therefore, developing less energy intensive and capital economical alternatives, such as physisorption separation at room temperature using porous materials, is a critical and urgent issue. The emerging novel solid porous materials such as metal-organic frameworks (MOFs), porous organic cage molecules exhibit excellent performance on noble gases (xenon and krypton) separation and favorable application foreground. This article systematically summarizes the research progress of novel porous materials applied in noble gas Xe/Kr separation. The research work from three fa-cets, including application of theoretical calculation in Xe/Kr separation, separation of high concentration Xe and Kr, and separation of extremely low concentration Xe and Kr are reviewed and discussed. Finally, a critical comment on prospects of the future research of Xe/Kr separation using novel porous materials is addressed in order to guide the newcomer in this field.
Key words:  noble gas    adsorption    separation    novel porous materials    metal-organic framework
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB34  
  O614  
  O613.14  
  O613.15  
基金资助: *国家自然科学基金(21501158);中国工程物理研究院放射化学学科909项目
作者简介:  刘博煜:女,1992年生,硕士研究生,主要从事惰性气体分离研究 E-mail:liuboyu205@163.com 胡胜:通讯作者,男,1974年生,博士,研究员,主要从事放化分析与材料研究 E-mail:husheng@126.com 熊顺顺:通讯作者,男,1985年生,博士,副研究员,主要从事气体吸附与分离多孔功能材料的研究 E-mail:ssxiong@caep.cn
引用本文:    
刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳. 新型多孔材料在惰性气体Xe/Kr分离中的应用*[J]. 《材料导报》期刊社, 2017, 31(19): 51-59.
LIU Boyu, GONG Youjin, LIU Qiang, LI Wei, WU Xiaonan, XIONG Shunshun, HU Sheng, WANG Xiaolin. Application of Novel Porous Materials in Noble Gas Xe/Kr Separation. Materials Reports, 2017, 31(19): 51-59.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.007  或          http://www.mater-rep.com/CN/Y2017/V31/I19/51
1 Denisova N, Gavare Z, Revalde G, et al. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures[J]. J Phys D: Appl Phys,2011,44(15):155201.
2 Bussiahn R, Gortchakov S, Lange H, et al. Experimental and theoretical investigations of a low-pressure He-Xe discharge for lighting purpose[J]. J Appl Phys,2004,95(9):4627.
3 Rossella F, Rose H M, Witte C, et al. Design and characterization of two bifunctional cryptophane A—Based host molecules for xenon magnetic resonance imaging applications[J]. Chem Plus Chem,2014,79(10):1463.
4 Hollenberg M, Dougherty J. Liver blood flow measured by portal venous and hepatic arterial routes with Kr-85[J]. Am J Physiology-Legacy Content,1966,210(5):926.
5 Garg R. Xenon for induction of anaesthesia[J]. Surgery,2008,52:1273.
6 袁良本, 谈德清. 核工业中的氪和氙[M]. 北京:原子能出版社,1983:308.
7 Hagiwara K, Ebihara T, Urasato N, et al. Application of 129 Xe NMR to structural analysis of MoS2 crystallites on Mo/Al2O3 hydrodesulfurization catalyst[J]. Appl Catal A: Gen,2005, 285(1):132.
8 Chakkarapani E, Thoresen M, Hobbs C E, et al. A closed-circuit neonatal xenon delivery system: A technical and practical neuroprotection feasibility study in newborn pigs[J]. Anesthesia Analgesia,2009,109(2):451.
9 Schröder L, Meldrum T, Smith M, et al. Temperature response of Xe 129 depolarization transfer and its application for ultrasensitive NMR detection[J]. Phys Rev Lett,2008,100(25):257603.
10 Auer M, Kumberg T, Sartorius H, et al. Ten years of development of equipment for measurement of atmospheric radioactive xenon for the verification of the CTBT[J]. Pure Appl Geophys,2010,167(4-5):471.
11 Ma D F. Recovery of krypton and xenon and their applications[J]. Cryogenic Technol, 2007(B12):1(in Chinese).
马大方. 氪气和氙气的制备与应用[J]. 深冷技术,2007(B12):1.
12 Kerry F G. Industrial gas handbook: Gas separation and purification[M]. CRC Press,2007.
13 Jameson C J, Jameson A K, Lim H M. Competitive adsorption of xenon and krypton in zeolite NaA:129Xe nuclear magnetic resonance studies and grand canonical Monte Carlo simulations[J]. J Chem Phys,1997,107(11):4364.
14 Thallapally P K, Grate J W, Motkuri R K. Facile xenon capture and release at room temperature using a metal-organic framework: A comparison with activated charcoal[J]. Chem Commun,2012,48(3):347.
15 Stock N,et al. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chem Rev,2011,112(2):933.
16 Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424.
17 Grzesiak A L, Uribe F J, Ockwig N W, et al. Polymer-induced he-teronucleation for the discovery of new extended solids[J]. Angew Chem Int Ed,2006,45(16):2553.
18 Cohen S M. Modifying MOFs: New chemistry, new materials[J]. Chem Sci,2010,1(1):32.
19 Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. PNAS,2009,106(49):20637.
20 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1477.
21 Zhang Z, Zhao Y, Gong Q, et al. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem Commun,2013,49(7):653.
22 Lu W, Yuan D, Zhao D, et al. Porous polymer networks: Synthesis, porosity, and applications in gas storage/separation[J]. Chem Mater,2010,22(21):5964.
23 Farrusseng D. Metal-organic frameworks: Applications from cataly-sis to gas storage[M].Weinheim,Germany: John Wiley Sons,2011.
24 Lee J Y, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts[J]. Chem Soc Rev,2009,38(5):1450.
25 iXamena F X L, Abad A, Corma A, et al. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF[J]. J Catal,2007,250(2):294.
26 Feng D,Gu Z Y, Li J K,et al. Zirconium-metalloporphyrin PCN-222:Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J].Angew Chem,2012,124(41):10453.
27 Liu B, Wu W P, Hou L, et al. Four uncommon nanocage-based Ln-MOFs: Highly selective luminescent sensing for Cu2+ ions and selective CO2 capture[J]. Chem Commun,2014,50(63): 8731.
28 White K A, Chengelis D A, Gogick K A, et al. Near-infrared luminescent lanthanide MOF barcodes[J]. J Am Chem Soc,2009,131(50):18069.
29 Tan L L, Li H, Zhou Y, et al. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates[J]. Small,2015,11(31):3807.
30 Horcajada P, Chalati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater,2010,9(2):172.
31 Salles F, et al. Molecular dynamics simulations of brea-thing MOFs: Structural transformations of MIL-53 (Cr) upon thermal activation and CO2 adsorption[J]. Angew Chem,2008,120(44):8615.
32 An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange[J]. J Am Chem Soc,2010,132(16):5578.
33 Yazaydin A O, Benin A I, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J]. Chem Mater,2009,21(8):1425.
34 Xiong S, Gong Y, Wang H, et al. A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation[J]. Chem Commun,2014,50(81):12101.
35 Chen B, Ockwig N W, Millward A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angew Chem,2005,117(30):4823.
36 Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared[J]. Adv Funct Mater,2006,16(4):520.
37 Orcajo G, Villajos J A, Martos C, et al. Influence of chemical composition of the open bimetallic sites of MOF-74 on H2 adsorption[J]. Adsorption,2015,21(8):589.
38 Haldoupis E, Watanabe T, Nair S, et al. Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8[J]. Chem Phys Chem,2012,13(15):3449.
39 Llewellyn P L, Bourrelly S, Serre C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir,2008,24(14):7245.
40 Wood C D, Tan B, Trewin A, et al. Microporous organic polymers for methane storage[J]. Adv Mater,2008,20(10):1916.
41 Liu Y, Liu D, Yang Q, et al. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures[J]. Ind Eng Chem Res,2010,49(6):2902.
42 Nijem N, Wu H, Canepa P, et al. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons[J]. J Am Chem Soc,2012, 134(37):15201.
43 Hou X J, He P, Li H, et al. Understanding the adsorption mechanism of C2H2, CO2, and CH4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites[J]. J Phys Chem C,2013,117(6):2824.
44 Jorge M, Fischer M, Gomes J R B, et al. Accurate model for predicting adsorption of olefins and paraffins on MOFs with open metal sites[J]. Ind Eng Chem Res,2014,53(40):15475.
45 Ling Y, Song C, Feng Y, et al. A metal-organic framework based on cyclotriphosphazene-functionalized hexacarboxylate for selective adsorption of CO2 and C2H6 over CH4 at room temperature[J]. CrystEngComm,2015,17(33):6314.
46 Liu K, Li B, Li Y, et al. An N-rich metal-organic framework with an rht topology: High CO2 and C2 hydrocarbons uptake and selective capture from CH4[J]. Chem Commun,2014, 50(39):5031.
47 Ploegmakers J, Japip S, Nijmeijer K. Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: Membrane preparation and characterization[J]. J Membr Sci,2013,428:445.
48 Holst J R, Trewin A, Cooper A I. Porous organic molecules[J]. Nat Chem,2010,2(11):915.
49 Ryan P, Farha O K, Broadbelt L J, et al. Computational screening of metal-organic frameworks for xenon/krypton separation[J]. AIChE J,2011,57(7):1759.
50 Sikora B J, Wilmer C E, Greenfield M L, et al. Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-orga-nic frameworks[J]. Chem Sci,2012,3(7):2217.
51 Greathouse J A, Kinnibrugh T L, Allendorf M D. Adsorption and separation of noble gases by IRMOF-1: Grand canonical Monte Carlo simulations[J]. Ind Eng Chem Res,2009,48(7):3425.
52 Gurdal Y, Keskin S. Atomically detailed modeling of metal organic frameworks for adsorption, diffusion, and separation of noble gas mixtures[J]. Ind Eng Chem Res,2012, 51(21):7373.
53 Gurdal Y, Keskin S. Predicting noble gas separation performance of metal organic frameworks using theoretical correlations[J]. J Phys Chem C,2013,117(10):5229.
54 Wang Q, Wang H, Peng S, et al. Adsorption and separation of Xe in metal-organic frameworks and covalent-organic materials[J]. J Phys Chem C,2014,118(19):10221.
55 Vazhappilly T, Ghanty T K, Jagatap B N. Computational modeling of adsorption of Xe and Kr in M-MOF-74 metal organic frame works with different metal atoms[J]. J Phys Chem C, 2016,120(20):10968.
56 Wei Jianwei. Effect of gas absorption and decomposition on nanotube-graphene complex defect[J]. J Chongqing University of Technology(Natural Science),2015,29(12):48(in Chinese).
韦建卫. 纳米管-石墨烯复合缺陷结构的几种气体吸附分解效应[J]. 重庆理工大学学报(自然科学版),2015,29(12):48.
57 Liu J, Strachan D M, Thallapally P K. Enhanced noble gas adsorption in Ag@MOF-74Ni[J]. Chem Commun,2014,50(4):466.
58 Grosse R, Gedeon A, Watermann J, et al. Adsorption and 129Xe nmr of xenon in silver-exchanged Y zeolites: Application to the location of silver cations[J]. Zeolites,1992, 12(8):909.
59 Gedeon A, Burmeister R, Grosse R, et al. 129Xe NMR for the study of oxidized and reduced AgX zeolites[J]. Chem Phys Lett,1991,179(1-2):191.
60 Nguyen H G, Konya G, Eyring E M, et al. Theoretical study on the interaction between xenon and positively charged silver clusters in gas phase and on the (001) chabazite surface[J]. J Phys Chem C,2009,113(29):12818.
61 Wang H, Yao K, et al. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases[J]. Chem Sci,2014,5(2): 620.
62 Xiong S, Liu Q, et al. A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases[J]. J Mater Chem A,2015,3(20):10747.
63 Fernandez C A, Liu J, Thallapally P K, et al. Switching Kr/Xe selectivity with temperature in a metal-organic framework[J]. J Am Chem Soc,2012,134(22):9046.
64 Mohamed M H, et al. Hybrid ultra-microporous materials for selective xenon adsorption and separation[J]. Angew Chem Int Ed,2016,55(29):8285.
65 Bae Y S, Hauser B G, Colón Y J, et al. High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites[J]. Microp Mesop Mater,2013,169: 176.
66 Chen X, Plonka A M, et al. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework[J]. J Am Chem Soc,2015,137(22):7007.
67 Mueller U, et al. Metal-organic frameworks—Prospective industrial applications[J]. J Mater Chem,2006,16(7):626.
68 Meek S T, Teich-McGoldrick S L, Perry J J, et al. Effects of pola-rizability on the adsorption of noble gases at low pressures in monohalogenatedisoreticular metal-organic frameworks[J]. J Phys Chem C,2012,116(37):19765.
69 Boutin A, Springuel-Huet M A, et al. Breathing transitions in MIL-53 (Al) metal-organic framework upon xenon adsorption[J]. Angew Chem Int Ed,2009,48(44):8314.
70 Liu J, Thallapally P K, Strachan D. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants[J]. Langmuir,2012,28(31):11584.
71 Chen L, Reiss P S, Chong S Y, et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages[J]. Nat Mater,2014,13(10):954.
72 Patil R S, Banerjee D, et al. Noria: A highly xe-selective nanoporous organic solid[J]. Chem—A Eur J,2016,22(36):12618.
73 Banerjee D, Simon C M, Plonka A M, et al. Metal-organic framework with optimally selective xenon adsorption and separation[J]. Nat Commun,DOI:10.1038/ncomms11831.
74 Dorcheh A S, Denysenko D, Volkmer D, et al. Noble gases and microporous frameworks; from interaction to application[J]. Microp Mesop Mater,2012,162:64.
75 Zhong S, Wang Q, Cao D. ZIF-derived nitrogen-doped porous carbons for Xe adsorption and separation[J]. Sci Rep,2016,6:21295.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[13] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed