Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21070164-3    https://doi.org/10.11896/cldb.21070164
  金属与金属基复合材料 |
温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律
杜金亮1,2, 杨丽娜1, 冯运莉1,2,*, 李杰1,2, 刘国龙1, 吝冉1
1 华北理工大学冶金与能源学院,河北 唐山 063210
2 现代冶金技术教育部重点实验室, 河北 唐山 063210
Co-evolution of Ferrite and Carbide During Annealing of Warm-rolled 40CrMo Medium and Thick Steel Plate
DU Jinliang1,2, YANG Lina1, FENG Yunli1,2,*, LI Jie1,2, LIU Guolong1, LIN Ran1
1 College of Metallurgy and Energy,North China University of Science and Technology,Tangshan 063210, Hebei,China
2 Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 14071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将温轧40CrMo钢置于700 ℃下退火,分别保温15 min、60 min、120 min,利用扫描电子显微镜(SEM)和电子背散射衍射(EBSD)技术观察铁素体与碳化物的协同演变规律。结果表明:温轧板的组织中分散着大量的纳米级碳化物,经过15 min退火保温后,组织内以铁素体的回复机制为主;带状铁素体出现向等轴状转变的趋势,铁素体平均晶粒尺寸为0.76 μm;铁素体晶内部碳化物尺寸较小,晶界上的碳化物尺寸较大,碳化物平均尺寸为54.85 nm。将退火保温时间延长到60 min后,组织内主要发生铁素体的再结晶和部分晶粒的长大,铁素体的平均晶粒尺寸为1.86 μm,碳化物开始长大与球化,碳化物平均尺寸为57.55 nm。退火120 min后,组织内主要以长大机制为主,晶粒的长大和晶界的迁移现象最为明显,得到粗大的铁素体和碳化物,此时铁素体的平均晶粒尺寸为4.15 μm,碳化物的平均尺寸为61 nm。随着退火时间的延长,晶界经历亚晶界迁移、大角度晶界快速增殖和大角度晶界缓速增殖三个阶段的演变过程。本工作通过对实验数据进行拟合分析,构建了40CrMo钢温轧板在退火过程中铁素体与碳化物的长大动力学模型,发现铁素体和碳化物的交互长大机制与长大速率有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜金亮
杨丽娜
冯运莉
李杰
刘国龙
吝冉
关键词:  40CrMo钢  温轧  退火  碳化物长大  晶界演变  动力学模型    
Abstract: The warm-rolled 40CrMo steel was annealed at 700 ℃ and held for 15 min, 60 min, and 120 min, respectively. The synergistic evolution of ferrite and carbide was observed by scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) techniques. The results show that a large number of nano-scale carbides are dispersed in the microstructure of the warm-rolled sheet. After 15 min annealing and heat preservation, the recovery mechanism of ferrite in the microstructure is dominant. Banded ferrite tends to transform to equiaxed shape, and the average grain size of ferrite is 0.76 μm. The size of carbides inside ferrite grains is small, and the size of carbides on grain boundaries is larger, with an average size of carbides of 54.85 nm. After extending the annealing holding time to 60 min, the recrystallization of ferrite and the growth of some grains mainly occurred in the microstructure. At this time, the average grain size of ferrite is 1.86 μm, the carbides begin to grow and spheroidize, and the average size of carbides is 57.55 nm. After annealing for 120 min, the growth mechanism dominated the tissue. At this time, the growth of grains and the migration of grain boundaries are most obvious, and coarse ferrite (4.15 μm) and carbide (61 nm) are obtained. With the prolongation of annealing time, the grain boundary undergoes three stages of evolution: sub-grain boundary migration, high-angle grain boundary rapid proliferation and high-angle grain boundary slow proliferation. In this work, by fitting the experimental data, the kinetic model of ferrite and carbide growth in the annealing process of 40CrMo steel warm-rolled plate was constructed, which coordinated growth mechanism of ferrite and carbide was found to be related to the growth rate.
Key words:  40CrMo steel    warm-rolled    annealing    carbide grows up    grain boundary evolution    kinetic model
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51974134);河北省科技重大专项项目(21281008Z)
通讯作者:  *冯运莉,华北理工大学教授、博士研究生导师,学科带头人,国家级特色专业-金属材料工程专业负责人。2006年毕业于中国矿业大学(北京),获博士学位。在国内外学术期刊上发表论文130余篇,出版教材2部,获得国家发明专利授权9项。团队主要研究方向包括:磁性材料、高性能金属材料、材料加工新技术与组织性能控制等。近年承担国家自然科学基金6项。tsfengyl@163.com   
作者简介:  杜金亮,2018年6月于华北理工大学获得金属材料工程学士学位,目前为华北理工大学硕士研究生,主要从事金属材料加工工程、纳米材料、先进汽车材料研究。
引用本文:    
杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
DU Jinliang, YANG Lina, FENG Yunli, LI Jie, LIU Guolong, LIN Ran. Co-evolution of Ferrite and Carbide During Annealing of Warm-rolled 40CrMo Medium and Thick Steel Plate. Materials Reports, 2023, 37(8): 21070164-3.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070164  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21070164
1 Yao S J, Liu H T, Sun L, et al. Materials and Manufacturing Processes, 2016, 32, 12.
2 Erfan A, Quanshun L, Dave O. Acta Metallurgica Sinica, 2019, 32(1), 74.
3 Tavakoli M, Mirzadeh H, Zamani M. Materials Science and Technology, 2019, 35(16), 1932.
4 Pan W, Li Z L, Shan Q, et al. Chinese Journal of Materials Research, 2015, 29(6), 422 (in Chinese).
潘伟, 李祖来, 山泉, 等. 材料研究学报, 2015, 29(6), 422.
5 Shan L H, Wang L H, Liu S P, et al. Hot Working Technology, 2021, 50(4), 59 (in Chinese).
单陇红, 王凌浩, 刘顺彭, 等. 热加工工艺, 2021, 50(4), 59.
6 Ai J H, Zhao T C, Gao H J, et al.Journal of Materials Processing Technology, 2005, 160(3), 390.
7 Cota A B, Santos D B.Materials Characterization, 2000, 44(3), 291.
8 Ouchi C. ISIJ International, 2001, 41(6), 542.
9 Wang P, Xiang Y, Wang X, et al.International Journal of Plasticity, 2019, 123, 22.
10 Shanmugam S,Misra R D K, Mannering T, et al. Materials Science and Engineering A, 2006, 437(2), 436.
11 Shanmugam S,Ramisetti N K, Misra R D K, et al. Materials Science and Engineering A, 2007, 460, 335.
12 Li Q, Wang T S, Jing T F, et al. Materials Science and Engineering A, 2009,515(1), 38.
13 Zhu Y S, Zhang J M, Qu J B, et al. Transactions of Materials and Heat Treatment, 2019, 40(7), 101 (in Chinese).
朱延山, 张继明, 曲锦波,等. 材料热处理学报, 2019, 40(7), 101.
14 Sakai T, Belyakov A,Kaibyshev R, et al. Progress in Materials Science, 2014, 60,130.
15 Kimura Y, Inoue T, Yin F, et al. Science, 2008, 320(5879), 1057.
16 Liu X F. Petrochemical Industry Technology, 2021, 28(4), 34 (in Chinese).
刘晓峰. 石化技术, 2021, 28(4), 34.
17 Ran X.Mechanical and Electrical Information, 2016(21), 104 (in Chinese).
冉昕. 机电信息, 2016(21), 104.
18 Ni Z H. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2012, 33(2), 141 (in Chinese).
倪志华. 内蒙古农业大学学报(自然科学版), 2012, 33(2), 141.
19 Dolzhenko A, Kaibyshev R, Belyakov A. Materials Letters, 2021, 303, 130547.
20 Liu B X, Fan K Y, Yin F X, et al.Materials Science and Engineering A, 2020, 774, 138954.
21 Du J L, Feng Y L, Zhang Y L.Materials Reports, 2021, 35(15), 15189.
杜金亮, 冯运莉, 张颖隆. 材料导报, 2021, 35(15), 15189.
22 Min X, Kimura Y, Kimura T, et al.Materials Science and Engineering A, 2016, 649, 135.
23 Liu J, Deng X T, Huang L, et al.Transactions of Materials and Heat Treatment,2019, 40(3), 88 (in Chinese).
刘佳, 邓想涛, 黄龙, 等. 材料热处理学报, 2019, 40(3), 88.
24 Li H B, Zheng X P, Wan D C, et al. Journal of Iron and Steel Research, International, 2019,26(6),602.
25 Du J, Li J, Feng Y, et al.Materials & Design, 2022, 221, 110953.
26 Song Z F, Kong P F, Feng Y L, et al.Hot Working Technology, 2019, 48(6), 188(in Chinese).
宋卓斐, 孔鹏飞, 冯运莉, 等. 热加工工艺, 2019, 48(6), 188.
27 Du J, Liu G, Feng Y, et al.Materials Science and Engineering A, 2023, 868, 144770.
28 Du J, Li J, Feng Y, et al.International Journal of Plasticity, 2023, 164, 103587.
29 Yu S, Tao Z, Du L X.Hot Working Technology, 2020, 49(6), 121 (in Chinese).
于帅, 陶振, 杜林秀. 热加工工艺, 2020, 49(6), 121.
30 Wang Y X, Zhao X M, Mao X Y, et al.Iron and Steel, 2018, 53(7), 80 (in Chinese).
汪杨鑫, 赵秀明, 毛向阳, 等. 钢铁. 2018, 53(7), 80.
31 Li Y J, Liu S T.Thermal Power Generation,1997(3), 21(in Chinese).
李耀君, 刘树涛. 热力发电, 1997(3), 21.
32 Wu M, Li G P, Zou Y, et al.Iron and Steel, 2021, 56(1), 97 (in Chinese).
武敏, 李国平, 邹勇, 等. 钢铁,2021, 56(1), 97.
33 Yang M, King D J M,Povstugar I, et al. Acta Materialia, 2021, 205, 116542.
34 Ma Z, Zhu H, Cao Y, et al.Materials Science and Engineering A, 2021, 800, 140345.
35 Du J L, Feng Y L, Zhang M.Journal of Materials Research and Technology, 2021, 15, 4914.
[1] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[2] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[3] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[4] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[5] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[6] 张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
[7] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[8] 邓丽莎, 何陈强, 杨宏, 甘勇, 陈冷. 偏析法制备高纯电子铝箔的再结晶织构演变[J]. 材料导报, 2022, 36(21): 21040243-6.
[9] 张振, 丁旭, 田晓东, 史豪杰, 罗海龙. 退火温度对5052/AZ31B爆炸复合板组织与性能的影响[J]. 材料导报, 2022, 36(15): 21040005-6.
[10] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[11] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[12] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[13] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[14] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[15] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed