Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 26-30    https://doi.org/10.11896/j.issn.1005-023X.2017.016.006
  材料研究 |
通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*
李庆达1, 郭建永1, 胡军1, 王宏立1, 连法增2, 陆曹卫3
1 黑龙江八一农垦大学工程学院, 大庆 163319;
2 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110004;
3 安泰科技股份有限公司,北京 100081
Improving the Performance of FINEMET Nanocrystalline Magnetic Powder Core by a Revamped Process and the Corresponding Mechanism
LI Qingda1, GUO Jianyong1, HU Jun1, WANG Hongli1, LIAN Fazeng2, LU Caowei3
1 College of Engineering,Heilongjiang August First Land Reclamation University, Daqing 163319;
2 Key Laboratory for Anisotropy and Texture of Materials of Ministry of Education, Northeastern University, Shenyang 110004;
3 Advance Technology and Materials Co., Ltd., Beijing 100081
下载:  全 文 ( PDF ) ( 1513KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对比实验研究了改进的制备工艺下FINEMET纳米晶磁粉芯的磁性能,并探讨了其相应的物理机制。采用扫描电镜、透射电镜和X射线衍射仪检测磁粉的表面形貌、内部结构和晶格畸变,采用B-H分析仪检测磁粉芯的动态磁性能。结果表明,改进的制备工艺能够有效降低磁粉芯的损耗,提高磁导率和频率应用范围。延长非晶粉末的球磨时间能够降低磁粉芯的磁滞损耗和涡流损耗,最佳的球磨时间为8 h。通过对比磁粉的晶格畸变,发现通过改进工艺制备的磁粉的晶格畸变相对较小,该工艺提高磁性能的原因在于磁粉残余内应力的有效释放。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李庆达
郭建永
胡军
王宏立
连法增
陆曹卫
关键词:  FINEMET  磁粉芯  退火  损耗  磁导率  改进的制备工艺    
Abstract: The magnetic property of FINEMET nanocrystalline magnetic powder core prepared by a revamped process was studied through comparative experiments, and the corresponding physical mechanism was observed. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the morphology, internal structure and lattice deformation of magnetic powders, B-H analyzer was used to characterize magnetic properties of magnetic powder core. The results showed that the revamped process could effectively reduce the loss of the magnetic powder core, and promote magnetic permeability and frequency range. The hysteresis loss and eddy current loss could be decreased by increasing milling time, and the optimum mil-ling time was 8 h. Our experiments found that the magnetic powders produced by the revamped process possess a relatively low lattice deformation, which means that the effective release of the remnant internal stress leads to the improve of magnetic powder core′s performance.
Key words:  FINEMET    magnetic powder core    annealing    loss    permeability    revamped process
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TM271.2  
  TM272  
基金资助: 黑龙江省自然科学基金(QC2014C058); 黑龙江省普通高等学校青年学术骨干支持计划(1252G042); 黑龙江八一农垦大学引进人才科研启动基金(2010)
作者简介:  李庆达:男,1982年生, 博士, 副教授, 主要研究方向为金属软磁材料及器件 E-mail:liqingda23@126.com
引用本文:    
李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
LI Qingda, GUO Jianyong, HU Jun, WANG Hongli, LIAN Fazeng, LU Caowei. Improving the Performance of FINEMET Nanocrystalline Magnetic Powder Core by a Revamped Process and the Corresponding Mechanism. Materials Reports, 2017, 31(16): 26-30.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.006  或          http://www.mater-rep.com/CN/Y2017/V31/I16/26
1 Muller M, Novy A, Brunner M, et al. Powder composite core of nanocrystalline soft magnetic FeSiBCuNb alloys[J]. J Magn Magn Mater,1999,196-197:357.
2 Iqbal Y, Daes H A, Gibbs M R, et al. Nanocrystalline powder cores for high frequency applications[J]. J Magn Magn Mater,2002,242-245:282.
3 Kim G H, Nof T H. Magnetic properties of FeCuNbSiB nanocrystalline alloy powder cores using ball-milled powder[J]. J Appl Phys,2008,93(10):7211.
4 Wang Xiangyue, Lu Caowei, Guo Feng, et al. New Fe-based amorphous compound powder cores with superior DC-bias properties and low loss characteristics[J]. J Magn Magn Mater,2013,347:1.
5 Tang Zhenjie, Zhu Zhenghou. Research on magnetic properties of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline dust core[J]. J Funct Mater,2008,39(8):1268 (in Chinese).
汤振杰,朱正吼. Fe73.5Cu1Nb3Si13.5B9纳米晶磁粉芯磁性能研究[J]. 功能材料,2008,39(8):1268.
6 Li Changquan. Preparation and properties of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline powder core [J]. Electron Compon Mater,2006,25(5):36(in Chinese).
李长全. FeCuNbSiB纳米晶磁粉芯制备及其性能研究[J].电子元件与材料,2006,25(5):36.
7 Lu Caowei, Lu Zhichao, Guo Feng, et al. Magnetic properties of amorphous Fe69Ni5Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core using same[J]. J Iron Steel Res,2007,19:33.
8 Molodov D A, Bhaumik S, Molodova X. Annealing behaviour of cold rolled aluminum alloy in high magnetic field[J]. Scr Mater,2006,54:2161.
9 Shokrollahi H, Janghorban K. Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic compo-sites[J]. J Magn Magn Mater,2007,313:182.
10 Matsumoto H, Urata A, Yamada Y, et al. FePBNbCr soft magnetic glassy alloys with low loss characteristics for inductor cores[J]. J Alloys Compd,2010,504S:S139.
11 Shokrollahi H, Janghorban K. Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites[J]. J Magn Magn Mater,2007,317: 61.
12 Li Qingda, Lian Fazeng, Sun Yun, et al. Study on preparing process of Fe-Si-Al composite magnetic powder cores [J].J Mater Eng,2011(2):65(in Chinese).
李庆达,连法增,孙陨,等. Fe-Si-Al复合磁粉芯制备工艺的研究[J].材料工程,2011(2):65.
13 Yin Fuzheng, Yang Yuting, Cui Jianmin, et al. Effect of heat-treatment of iron powder on magnetic properties of iron-based soft magnetic material[J]. Trans Mater Heat Treatment, 2010, 31(6): 45 (in Chinese).
尹福正,杨钰婷,崔建民,等. 铁粉热处理对铁基软磁材料性能的影响 [J].材料热处理学报,2010,31(6): 45.
14 Kim Yoon B, Jang D H, Seok H K, et al.Fabrication of Fe-Si-B based amorphous powder cores by cold pressing and their magnetic properties[J]. Mater Sci Eng A,2007,449-451:389.
15 Xu Hui, He Kaiyuan, Qiu Yuqing, et al.Investigation of the magnetic properties of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline dust core [J]. J Funct Mater,2000,31(1):42.
16 Manivcl Raja M, Ponpandian N,Majumdar B, et al. Soft magnetic properties of nanostructured FINEMET alloy powder cores[J]. Mater Sci Eng A,2001,304-306:1062.
[1] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[2] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[3] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[4] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[5] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[6] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[7] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[8] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[9] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[10] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[11] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[12] 贺凯, 陈诺夫, 魏立帅, 王从杰, 陈吉堃. 退火对铝诱导结晶锗薄膜的影响及其机理[J]. 材料导报, 2018, 32(15): 2571-2575.
[13] 闫海阔,郑晓平,王璠,包锦标,王市伟. 利用超临界CO2调控聚合物二元共混物的相形貌及力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2057-2061.
[14] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[15] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed