Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 437-442    
  金属与金属基复合材料 |
基于4130X材料的高压氢脆评价方法研究
翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺
中国特种设备检测研究院,北京 100029
High-pressure Hydrogen Embrittlement Evaluation Method Research Based on 4130X Material
ZHAI Jianming, SHANG Xuexin,WANG Hankui, XU Tong, YU Haiyang, SUN Yonghui, LIU Wang
China Special Equipment Inspection and Research Institute, Beijing 100029, China
下载:  全 文 ( PDF ) ( 5880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料氢脆会严重影响高压氢气储、运系统的性能,随着氢能在交通、电力等领域的应用,材料氢脆及服役安全也越来越受到重视。针对4130X材料氢脆敏感度评价及材料氢脆性能评价方法问题,开展了基于圆片压力试验与断裂力学试验技术的材料高压氢脆性能评价研究,并对材料的高压氢脆评价方法展开了讨论。结果表明4130X材料的氢脆敏感度系数为1.11,恒位移加载条件下材料的氢致开裂门槛值KIH为87.81 MPa·m1/2。在微观断口分析中研究发现氢的介入导致材料断裂呈现了准解理及沿晶断口形貌。基于上述研究,本文提出针对CrMo高强钢开展ISO 11114-4标准中氢脆性能评价时,在方法选择上可采用A、B或A、C方法组合的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟建明
商学欣
王汉奎
徐彤
于海洋
孙永辉
柳旺
关键词:  高压氢脆  4130X  圆片试验  断裂力学    
Abstract: Hydrogen embrittlement (HE) in metals can seriously affect the performance of high-pressure hydrogen storage and transmit system. With the application of hydrogen energy in the fields of transportation and electric power, hydrogen embrittlement and service security have been paid more and more attention. To research the evaluation of hydrogen embrittlement sensitivity of 4130X materials and the HE evaluation me-thods, the disc pressure test and the fracture mechanics test were carried out, as well as the discussion of the high-pressure hydrogen embrittlement valuation methods. The HE sensitivity 1.11 and the KIH 87.81 MPa·m1/2 of 4130X were obtained, respectively. It is also found that the intervention of hydrogen caused the fracture to appear quasi-cleavage and intergranular fracture morphology. For the HE evaluation of CrMo high-strength steel, the suggestion that A and B methods or A and C methods in ISO 11114-4 for the test method selection was bringing up based on the above research.
Key words:  high-pressure hydrogen embrittlement    4130X    disc pressure test    fracture mechanics
                    发布日期:  2021-12-09
ZTFLH:  TG142.41  
  TK91  
  O341  
基金资助: 总局科技计划项目(2017QK184)
通讯作者:  jmzhai@163.com   
作者简介:  翟建明,高级工程师,2013年7月毕业于北京工业大学,获博士学位。2013年7月至今在中国特种设备检测研究院工作,主要从事材料的疲劳及环境氢脆。
引用本文:    
翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
ZHAI Jianming, SHANG Xuexin,WANG Hankui, XU Tong, YU Haiyang, SUN Yonghui, LIU Wang. High-pressure Hydrogen Embrittlement Evaluation Method Research Based on 4130X Material. Materials Reports, 2021, 35(z2): 437-442.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/437
1 Gangloff R P, Somerday B P. Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge UK, 2012.
2 韩鸿硕.宇航材料工艺, 1976(4), 3.
3 San Marchi C, Somerday B P, Nibur KA. International Journal of Hydrogen Energy,2014, 39, 20434.
4 ASTM F1624-12. Standard test method for measurement of hydrogen embrittlement threshold in steel by the incremental step loading technique. ASTM international, 2012.
5 ASTM F1459-06 (Reapproved 2017), Standard test method for determination of the susceptibility of metallic materials to hydrogen gas embrittlement (HGE). ASTM international. 2017.
6 ASTM G142-98 (Reapproved 2016), Standard test method for determination of the susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both. ASTM international. 2016.
7 ASTM STP 543 Hydrogen embrittlement testing. ASTM international.1974.
8 ISO 11114-4: 2005. Transportable gas cylinders-compatibility of cylinder and valve materials with gas contents-part4: test methods for selecting metallic materials resistance to hydrogen embrittlement. 2005.
9 ASME VIII-3 Article kd-10 special requirements for vessels in hydrogen service. 2017.
10 NACE TM0284-2003, Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International, Houston.
11 ANSI/CSA CHMC1-2014 Test method for evaluating material compatibi-lity in compressed hydrogen applications. US-ANSI.
12 SAE J2579 JAN2009. Technical information report for fuel systems in fuel cell and other hydrogen vehicles . SAE International. 2009.
13 GB/T 24185-2009, 逐级加力法测定钢中氢脆临界值试验方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2009.
14 GB/T 23606-2009, 铜氢脆检验方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2009.
15 GB/T 8650-2015, 管线钢和压力容器钢抗氢致开裂评定方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2015.
16 GB/T 34542.2-2018, 氢气储存输送系统 第2部分:金属材料与氢环境相容性试验方法. 国家市场监督管理总局, 中国国家标准化管理委员会. 2018.
17 Briottet L, Moro I, Lemoine P. International Journal of Hydrogen Energy, 2012, 37(22),17616.
18 Briottet L, Batisse R, De Dinechin G, et al. International Journal of Hydrogen Energy, 2012, 37(11), 9423.
19 Michler T, Yukhimchuk A A, Naumann J. Corrosion Science, 2008, 50, 3519.
20 Takasawa K, IkedA R, Ishikawa N, et al. International journal of hydrogen Energy, 2012, 37(3), 2669.
21 Aprea J L. International Journal of Hydrogen Energy, 2009, 34(10), 4684.
22 周德惠, 谭云.金属的环境氢脆及其实验技术, 国防工业出版社, 1998.
23 李志林, 陈涛, 曾致翚.北京化工大学学报(自然科学版), 2005, 32(05), 60.
24 合肥通用机械研究院. 发明专利, CN 104215513A, 2014.
25 西安摩尔石油工程实验室有限公司. 发明专利, CN 104330312A, 2015.
26 翟建明,徐彤,王红霞,等.中国特种设备安全, 2017, 33(12), 1.
27 翟建明,徐彤,寿比南,等.中国特种设备安全, 2017, 33(10),1.
28 李晓东,陈良奭.腐蚀科学与防护技术,1994(2), 188.
29 ISO 7539-6:2003 Corrosion of metals and alloys — Stress corrosion testing — Part 6: Preparation and use of precracked specimens for tests under constant load or constant displacement. 2003.
30 Wang H K, Xu T, Shou B N. Materials, 2017, 10, 23.
31 GB/T 15970.6: 2007 金属和合金的腐蚀 应力腐蚀试验第6部分:恒载荷或恒位移下预裂纹试样的制备和应用, 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2007.
32 Zafr A, Peral L B, Belzunce J. et al. International Journal of Pressure Vessels and Piping, 2019, 171, 34.
33 ISO 11114-4: 2017. Transportable gas cylinders-compatibility of cylinder and valve materials with gas contents-part4: test methods for selecting metallic materials resistance to hydrogen embrittlement. 2017.
34 MatsumotoT, Kubota M, Matsuoka S, et al. International Journal of Hydrogen Energy, 2017, 42, 7422.
35 Lee W J, Chia W J, Wang J L, et al. Langmuir, 2010, 26(21), 16254.
36 Li Y D, Chen S M, Liu Y B, et al. Journal of Materials Science, 2010, 45(3), 831.
37 Michler T, Boitsov I E, Malkov I L, et al.Corrosion Science, 2012, 65, 169.
38 王兆希,屈宝平,薛飞,等.核动力工程,2011(4), 14.
39 Charles Y, Gasperini M, Fagnon N, et al.Engineering Fracture Mecha-nics,2019 (218), 106580.
40 Wang M Q, Akiyama E, Tsuzaki K. Materials Science and Engineering A, 2005, 398, 37.
41 Peral LB, Zafr A, Belzunce J,et al. International Journal of Hydrogen Energy, 2019, 44, 3853.
[1] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[2] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[3] 冷建成,田洪旭,周国强,吴泽民. 基于磁记忆方法的抽油杆裂纹扩展监测[J]. 《材料导报》期刊社, 2017, 31(24): 178-190.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed