Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 467-472    
  金属与金属基复合材料 |
高钛钢专用连铸保护渣研究现状及展望
王杏娟1,2, 曲硕1,2, 刘然1, 朱立光3, 朴占龙2,4, 邸天成1,2, 王宇1,2
1 华北理工大学冶金与能源学院,唐山 063210
2 河北省高品质钢连铸工程技术研究中心,唐山 063000
3 河北科技大学材料科学与工程学院,石家庄 050018
4 北京科技大学冶金与生态学院,北京 100083
Research Status and Prospect of Special Mold Flux for High Titanium Steel
WANG Xingjuan1,2, QU Shuo1,2, LIU Ran1, ZHU Liguang3, PIAO Zhanlong2,4, DI Tiancheng1,2, WANG Yu1,2
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
2 Hebei Engineering Research Center of High Quality Steel Continuous Casting, Tangshan 063000, China
3 School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
4 School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing, Beijing 100083,China
下载:  全 文 ( PDF ) ( 3049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着钢铁业的不断发展,机械、建筑、汽车、航空、机车等行业也取得长足进步,同时对钢铁材料的使用要求和服役条件也越来越苛刻,钢材性能逐步向高强化、高韧性、耐磨耐热耐蚀、易焊接等方面扩展。低成本、高附加值的高钛钢越来越受到重视。
将Ti以微合金元素或合金元素加入钢中,Ti与C、N、S有极强的亲合力,可细化晶粒,提高韧性、耐磨性能及晶间抗腐蚀能力。但同时Ti为易氧化元素,连铸过程中容易与保护渣反应生成TiN、Ti(CN)、TiO2等高熔点化合物,严重恶化了保护渣冶金性能,同时结晶器钢液面形成“结鱼”, 阻碍了坯壳与结晶器之间的保护渣流入通道,使得高钛钢难以实现多炉连浇,铸坯出现凹陷、裂纹、夹渣等一系列表面缺陷,甚至引起粘结漏钢。
本文归纳了高钛钢保护渣的研究进展,分别对高钛钢浇注过程中结晶器钢渣界面上Ti的反应行为与Ti进入保护渣后对保护渣性能的影响规律进行介绍,提出借鉴高铝钢低(非)反应性CaO-Al2O3基专用保护渣的经验,同时充分利用Ti在保护渣中的作用,将TiO2作为氟的替代组元,开发无氟保护渣。以期为开发高钛钢专用无氟保护渣提供重要的基础数据和理论支持,加快保护渣绿色环保的工业化进程,推动我国高钛钢生产工艺领域的技术进步和技术创新。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杏娟
曲硕
刘然
朱立光
朴占龙
邸天成
王宇
关键词:  高钛钢  无氟保护渣  钢渣界面反应  结鱼    
Abstract: With the continuous development of the steel industry, machinery, construction, automobile, aviation, locomotive and other industries have also made great progress. At the same time, the use requirements and service conditions of steel materials are becoming more and more demanding, and the properties of steel gradually expand to high strengthening, high toughness, wear resistance, heat resistance and corrosion resistance, easy welding and so on. High titanium steel with low cost and high added value has been paid more attention.
Ti is added to the steel as a micro-alloy element or alloy element. Ti has a strong affinity with C, N, S, which can refine the grain, improve toughness, wear resistance and intergranular corrosion resistance. But, Ti is also an easy-to-oxidize element, and it easily reacts with protective powder during the continuous casting process to form TiN, Ti(CN), TiO2 and other high-melting compounds, which seriously deteriorates the metallurgical performance of the mold flux, and at the same time forms "floater" on the steel surface of the mold, which hinders the flow of mold flux between the billet shell and the mold, making high-titanium steel difficult to achieve multi-furnace continuous casting, the casting billet appears a series of surface defects such as sags, cracks, slag inclusions, and even causes breakout by steaking.
This article summarizes the research progress of high-titanium steel protection slag, and introduces the reaction behavior of Ti at the mold steel slag interface during the casting of high-titanium steel and the influence of Ti on the mold flux after entering the mold flux. It is proposed to draw on the experience of low (non-)reactive CaO-Al2O3 based mold powder for high-aluminum steel, and make full use of the role of Ti in the mold powder, and use TiO2 as a replacement component of fluorine to develop fluorine-free mold powder. The purpose is to develop fluorine-free mold flux for high-titanium steel to provide important basic data and theoretical support, accelerate the industrialization of green and environmental mold flux, and promote technological progress and technological innovation in the production process of high-titanium steel in China.
Key words:  high-titanium steel    fluoride free mold flux    reaction of steel-slag interface    floater
                    发布日期:  2021-07-16
ZTFLH:  TF777  
基金资助: 国家自然科学基金(5197413;51774141);河北省自然科学基金(E2019209543)
通讯作者:  wxingjuan@ncst.edu.cn;zhuliguang@ncst.edu.cn   
作者简介:  王杏娟,华北理工大学冶金与能源学院教授。2002 年河北理工学院冶金系本科毕业,2005 年同校系硕士研究生毕业留校任教,2013 年获北京科技大学博士学位。主要研究方向为无缺陷凝固与高效化连铸的技术创新与工艺优化。
引用本文:    
王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
WANG Xingjuan, QU Shuo, LIU Ran, ZHU Liguang, PIAO Zhanlong, DI Tiancheng, WANG Yu. Research Status and Prospect of Special Mold Flux for High Titanium Steel. Materials Reports, 2021, 35(Z1): 467-472.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/467
1 王国栋. 钢铁, 2015, 50(9), 1.
2 Ma Xiaotian, Ye Liping, Qi Congcong, et al. Journal of Environmental Management, 2018, 224(15), 10.
3 https://www.ndrc.gov.cn/fgsj/tjsj/cyfz/zzyfz/202006/t20200630_1232430.html, 2020.
4 Li H F, Duan Q Q, Zhang P, et al. Engineering Fracture Mechanics, 2019, 211(15), 362.
5 刘莹莹, 陈子勇, 金头男, 等. 材料导报, 2018, 32(11), 1863.
6 谭建兴, 武鹏, 刘睿智, 等. 特殊钢, 2018, 39(3), 28.
7 Peng Z W, Li L J, Gao J X, et al.Materials Science & Engineering A, 2016, 657(7), 413.
8 Zhang L, et al.Journal of Non-Crystalline Solids, 2019, 511(1),41.
9 王杏娟, 武宾宾, 朱立光, 等.钢铁钒钛, 2017, 38(4), 135.
10 王杏娟, 田阔, 樊亚鹏, 等.材料导报, 2018, 32(12), 2100.
11 罗海文, 赵沛, 成国光, 等.钢铁, 2000, 35(11), 51.
12 卜勇, 胡本芙, 高桥平七郎, 等. 钢铁, 2002, 37(11), 48.
13 李永良, 陈梦谪.北京师范大学学报:自然科学版, 1999, 35(1),38.
14 杨作宏, 陈伯春.甘肃冶金, 2000, 9(4),20.
15 舒玮, 王学敏, 李书瑞, 等. 金属学报, 2010, 46(8),997.
16 谢利群, 毛新平, 霍向东. 冶金丛刊, 2005, 1(2), 1.
17 陈松军. 钛微合金钢组织变化和析出物控制研究. 硕士学位论文, 江苏大学, 2016.
18 高桥涉, 王晓帆. 国外金属加工, 1995, 7(1), 41.
19 姚思佳, 孙扬善, 薛烽, 等. 铸造, 2010, 59(3), 284.
20 梁小凯, 孙新军, 雍岐龙, 等.钢铁研究学报, 2016, 28(9), 71.
21 滕铝丹, 曹静, 张拓, 等. 铸造, 2017, 66(12), 1317.
22 赵朴. 钢铁研究学报, 1996, 8(3), 33.
23 裴丙红. 特钢技术, 2007, 14(4), 26.
24 Yu Z G, Leng H Y, Wang L J, et al. Ceramics International, 2019, 45(6), 7180.
25 Zhao H M, Wang X H, Zhang J M. Journal of University of Science & Technology Beijing, 2004, 78(2), 190.
26 Lei Yun, Xie Bing, Ma Wenhui.Journal of Iron and Steel Research International, 2016, 23(4), 322.
27 Gao Q, Min Y, Liu C J, et al. Journal of Iron and Steel Research International, 2017, 24(11), 1152.
28 Wang H M, Yang L L, Li G R. Journal of Iron and Steel Research, International, 2013, 20(16), 21.
29 赵俊学, 赵忠宇, 尚南, 等.钢铁, 2018, 53(10), 8.
30 Zahedi H. Baosteel Technology, 2008, 11(3), A93.
31 余志友.连铸, 2014, 22(2), 1.
32 杨辉, 陈根保, 戴伟, 等.云南冶金, 2017, 39(5), 21.
33 郑宏光, 陈伟庆, 陈宏, 等.特殊钢, 2004, 25(4), 50.
34 杨咏阶, 刘玉爱, 张向勇, 等. 特殊钢, 2018, 39(3), 9.
35 Jun Y, Li-Jiang W, Jian-Hua S. In: 4th International Conference on Continuous Casting of Steel in Developing Countries. Beijing, 2008, pp. 244.
36 Scoczylas G, Dusgupta A, Bommaraju R. Continuous Casting, 1995, 7, 197.
37 Bramfitt B L.Metallurgical & Materials Transactions B, 1970, 1(7), 1987.
38 赵克文, 蔡开科, 刘新华. 钢铁研究学报, 1989, 1(3) , 21.
39 郑宏光. 宝钢技术, 2008, 26(1), 50.
40 李刚, 魏瑞航, 游定方. 重庆大学学报(自然科学版), 1993, 16(2), 79.
41 He S P, Huang Q Y, Zhang G X, et al. Journal of Iron and Steel Research, International, 2011, 18(7), 15.
42 谢兵, 王谦, 王雨,等. 钢铁, 2003, 38(2), 19.
43 王谦, 谢兵, 迟景灏. 连铸, 1996, 4(3), 11.
44 徐文清, 王日红. 连铸, 2003, 11(4), 3.
45 郑展祥. 含钛铁素体不锈钢连铸结晶器内渣金反应的动力学研究. 硕士学位论文,东北大学, 2010.
46 刘承军, 孙丽枫, 毛天成, 等.工业加热, 2007, 36(6), 23.
47 Le J , Zhou Z H, Pan W L, et al. Metallurgical and Materials Transactions B, 2020,51(1), 85.
48 Hu K, Lv X, Yu W, et al. Metallurgical and Materials Transactions B, 2019, 50(6),2982.
49 谢兵. 连铸结晶器保护渣相关基础理论的研究及其应用实践. 博士学位论文, 重庆大学, 2004.
50 李德强. 工业加热, 2009, 38(1) , 51.
51 Zhen Y L, Zheng G H, Chou K C, et al. Canadian Metallurgical Quarterly, 2015, 54(3), 340.
52 Zhou L, Wang W, Wei J, et al.ISIJ international, 2013, 53(4), 665.
53 刘永庆, 唐萍, 文光华, 等. 中国有色金属学报, 2006, 16(3), 550.
54 韩文殿, 仇圣桃, 张兴中, 等. 钢铁研究学报, 2007, 19(3), 14.
55 陈卓, 何生平, 等. 四川冶金, 2017, 39(5), 21.
56 Qi X, Wen G H, Tang P.Journal of Iron and Steel Research Internatio-nal, 2010, 17(6), 10.
57 Arefpour A R, Monshi A, Khayamian T, et al.Refractories & Industrial Ceramics, 2013, 54(3), 203.
58 Scheller P R.Ironmaking and Steelmaking, 2002, 29(2), 154.
59 Jimbo I, Ozturk B, Feldbauer S,et a1. Steelmaking Conference Procee-dings, 1996, 27(4), 672.
60 Pretorius E B, Nunnington R C. Ironmaking and Steelmaking, 2002, 29(2), 133.
61 武守防, 李宏, 王恭亮, 等. 特殊钢, 2006, 27(5), 15.
62 Soltan Attar S, Monshi A, Meratian M.International Journal of Iron & Steel Society of Iran, 2011, 8(1), 5.
63 Kishi T, Tsuboi H, Takeuchi H, et al.Nippon Steel Technical Report, 1987, 34, 11.
64 Nakada, H, Nagata K. ISIJ International, 2006, 46(3), 441.
65 郭亭虎, 孙长悌, 赵施格. 钢铁研究学报, 1988, 8(S1), 131.
66 郭亭虎, 孙长悌, 赵施格. 钢铁, 1988, 13(11), 20.
67 郝占全, 陈伟庆, Carsten Lippold, 等. 特殊钢, 2009, 30(5), 13.
68 郝占全, 陈伟庆, Carsten Lippold, 等.过程工程学报, 2009, 9(3), 514.
69 Wang Z, Shu Q F , Hou X M , et al.Ironmaking & Steelmaking, 2012, 39(3), 210.
70 Wang Z, Shu, Q F& Chou, K. Metall and Materi Trans B, 2013,44, 606.
71 冀成庆, 谢兵, 雷云, 等. 北京科技大学学报, 2010, 32(3), 306.
72 王谦, 鲁永剑, 何生平. 连铸, 2011, 19(S1), 484.
73 Tang P, Wen G H. CN. patent, CN03117824.3, 2004
74 Li P, Wang Q, He S P, et al .CN. patent, CN105642849A, 2016.
75 Li G R,Wang H M. CN. patent, CN103042187A,2013.
76 Wang W L, Zhou L J, Zhao H, et al.CN. patent, CN104399922A, 2015.
[1] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[2] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed