Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 220-224    
  无机非金属及其复合材料 |
碳基材料对水泥基材料性能的影响
张小涛, 李庆超, 李东旭
南京工业大学材料科学与工程学院,南京 210009
Effect of Carbon Based Materials on Properties of Cement Based Materials
ZHANG Xiaotao, LI Qingchao, LI Dongxu
College of Material Science ang Engineering, Nanjing University of Technology, Nanjing 210009, China
下载:  全 文 ( PDF ) ( 2366KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基复合材料凭借其原料丰富、价格低廉、生产工艺简单、强度高等优点,广泛应用于现代化工程建设。但是这种材料长久以来都有高脆性以及裂缝等一系列的问题。针对这些问题世界各国的研究人员都主要致力于改善水泥基材料的力学性能。但是在目前的情况下,现代建筑对水泥基材料提出了许多新的要求,不仅要有好的力学行为,还要具有尽可能多的附加功能。合适的功能填料的掺入不仅能够使得水泥基复合材料的力学性能和耐久性能得到提升,还能有效地调控水泥基材料的导电率、热导率等一系列其他功能。
钢纤维、聚合物纤维和矿物纤维等是之前比较常见的功能掺料,这些材料依靠它们的强度和韧性可以用来改善材料的力学性能。但这些增强材料并不能在结构上改变水泥的水化产物,因此水泥基材料的高脆性及裂缝等问题依存在。而部分碳基材料在掺入到水泥基复合材料中以后可以对水泥基材料实现改性,不仅能从微观方面改变其结构,从而改善力学性能,还可以改善如导电性、导热性等性能。使水泥基复合材料能够尽可能地满足时代的要求。本文在近年来对多种不同的碳基材料掺杂水泥基复合材料研究的基础上,分别总结了不同碳基材料(碳纤维CF、碳黑CB、碳纳米管CNTs、石墨烯GR以及氧化石墨烯GO)对水泥基复合材料性能影响的基本原理,综述了近年来五种材料掺加在水泥基复合材料中的相关研究。此外,本文同时也对这些材料的复合掺入以及互相之间的改性掺入后的效果进行了简单总结,并且同时对水泥基复合材料的研究前景提出了一点看法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小涛
李庆超
李东旭
关键词:  水泥基材料  碳基材料  反应机理  性能    
Abstract: Cement based composite materials are widely used in modern engineering construction because of their rich raw materials, low price, simple production process and high strength. But this kind of material has a series of problems such as high brittleness and crack for a long time. In view of these problems, researchers are mainly committed to improving the mechanical properties of cement-based materials. However, in the current situation, modern buildings put forward many new requirements for cement-based materials, not only to have good mechanical behavior, but also to have as many additional functions as possible. Appropriate functional filler can not only improve the mechanical properties and durability of cement-based composite, but also effectively regulate the conductivity, thermal conductivity and other functions of cement-based materials.
Steel fiber, polymer fiber and mineral fiber are common functional additives for a long time. These materials can be used to improve the mechanical properties of materials depending on their strength and toughness. However, these reinforced materials can not change the hydration products of cement in structure, so the high brittleness and cracks of cement-based materials exist. Some of the carbon based materials can be modified after they are added into the cement-based composite materials. It can not only change its structure from the micro aspect, so as to improve the mechanical properties, but also improve the conductivity, thermal conductivity and other properties. So that cement-based composite materials can meet the requirements of the times as much as possible. In this paper, based on the research of various carbon based materials doped with cement-based composites in recent years, the basic principles of the influence of different carbon based materials (CF, CB, CNTs, GR and GO) on the properties of cement-based composites are summarized, and the related research of five materials mixed with cement-based composites in recent years is summarized. In addition, this paper also briefly summarizes the effects of these materials after composite and mutual modification, and puts forward some views on the research prospects of cement-based composite materials.
Key words:  cement based materials    carbon based materials    reaction mechanism    properties
               出版日期:  2021-05-25      发布日期:  2021-07-16
ZTFLH:  TU525  
  TU528  
基金资助: 国家自然科学基金( 51872137)
通讯作者:  dongxuli@njtech.edu.cn   
作者简介:  张小涛,现为南京工业大学材料科学与工程学院硕士研究生,在李东旭教授的指导下进行研究,主要研究方向为水泥基材料。李东旭,南京工业大学材料科学与工程学院教授、博士研究生导师。1982 年、1985 年分别获浙江大学学士学位、硕士学位。1998 年获南京化工大学博士学位。2000 年浙江大学博士后出站。主要从事新型碱胶凝材料、环境协调性胶凝材料和生物材料的物理化学原理和固态工业废渣的综合利用等方研究。承担国家“973”项目,担任第 3 课题“性能调节型辅助性胶凝组分的研究”的课题负责人。节能型钢渣水泥获化工部科技进步三等奖,获江苏省优秀论文奖和研究生社会实践优秀指导教师的称号,近五年在国内外重要刊物上发表学术论文 30 多篇,被 SCI 收录论文 9 篇。
引用本文:    
张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
ZHANG Xiaotao, LI Qingchao, LI Dongxu. Effect of Carbon Based Materials on Properties of Cement Based Materials. Materials Reports, 2021, 35(Z1): 220-224.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/220
1 Koga T, Hashimoto T, Takenaka M, et al. Macromolecules, 2008, 41(2), 453.
2 王玉林, 赵晓华, 刘辉. 硅酸盐通报, 2017, 36(11), 3902.
3 范杰, 李庚英, 熊光晶. 华中科技大学学报, 2016, 44(1), 22.
4 Wu B, Yu X H, Luo S G, et al.Molecules, 2019, 24, 21.
5 赵洁, 党松洋. 混凝土与水泥制品, 2019, 6(4), 49.
6 Wang Y, Zhang S H, Li G X, et al.Journal of Cleaner Production, 2019, 228, 1187.
7 Jia X W, Zhang X, Li J M, et al.Materials Research Express, 2018, 5, 9575.
8 Ban S, Malek K, Huang C, et al.Carbon, 2011, 49(10), 3362.
9 孙杰, 魏树梅. 新型建筑材料, 2018, 45(10), 61.
10 Sudan P, Zuttel A, Mauron P, et al.Carbon, 2003, 41(12), 2377.
11 Bethune D, Klang C, De V M, et al.Nature, 1993, 363(6430), 605.
12 石小冬,夏海延,马倩敏等. 硅酸盐通报, 2018, 37(12), 3789.
13 白雪石, 高文昌. 山西建筑, 2019, 45(15), 68.
14 戚瑞, 田威, 王峰. 硅酸盐通报, 2019, 38(3), 653.
15 范杰, 李庚英, 王中坤. 混凝土与水泥制品, 2019(3), 1.
16 李方贤, 杨椰榕, 杨鹏飞等. 硅酸盐通报, 2019, 38(5), 1302.
17 何锐, 杨哲, 张佳丽等. 长安大学学报, 2019, 39(2), 19.
18 Geim A K, Novoselov K S.Nature Materials, 2007, 6(3), 183.
19 陈宝锐, 吴其胜, 褚华军等. 材料科学与工程学报, 2018, 36(4), 0650.
20 蒋林华, 白舒雅, 金鸣等. 哈尔滨工程大学学报, 2018, 39(3), 601.
21 Zhu Y, Murali S, Cai W, et al.Advanced Materials,2010, 22(35), 3906.
22 曾鞠庆, 徐亦冬, 潘志宏等. 江苏科技大学学报, 2019, 33(3), 126.
23 Hu M M, Guo J T, Fan J J, et al.Construction and Building Materials, 2019, 216, 128.
24 Lu Z Y, Chen B M, Christopher K.Cement and Concrete Composites, 2019, 100, 85.
25 Hu M M, Guo J T, Li P P, et al.Construction and Building Materials, 2019, 225, 745.
26 Tanvirs Q , Daman K. Construction and Building Materials, 2019, 206, 71.
27 Li M, Wang H, Zhang C.Journal of Adhesion Science and Technology, 2019, 33(22), 2494.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[3] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[4] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[8] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[9] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[10] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[11] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[12] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[13] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[14] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[15] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed