Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3057-3066    https://doi.org/10.11896/cldb.19120086
  无机非金属及其复合材料 |
含碳耐火材料防氧化技术综述
代黎明1, 肖国庆1, 丁冬海1,2,3
1 西安建筑科技大学材料与工程学院,西安 710055;
2 西安建筑科技大学材料科学与工程博士后流动站,西安 710055;
3 中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,洛阳 471039
Review of Oxidation Resistance Technology of Carbon-containing Refractories
DAI Liming1, XIAO Guoqing1, DING Donghai1,2,3
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2 Postdoctoral Mobile Research Station of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd,. Luoyang 471039, China
下载:  全 文 ( PDF ) ( 8876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以MgO或Al2O3与鳞片石墨复合制备的含碳耐火材料具有优异的抗热震性、抗侵蚀性能,被广泛应用于浸入式水口、长水口、塞棒、滑板,以及具有控流和钢水净化作用的功能耐火材料部件和炼钢转炉、电炉、钢包内衬、冶金窑炉内衬等。同时,随着钢铁冶金等行业趋向于高效化和智能化,对含碳耐火材料的抗渣侵蚀性能和抗热震性能提出了更高的要求。而含碳耐火材料的损毁往往是从其中的石墨被氧化开始,碳的易氧化不仅消耗鳞片石墨资源释放温室气体,而且使含碳耐火材料的性能下降、使用寿命缩短。因此,含碳耐火材料防氧化技术的发展对钢铁冶金行业提质增效、资源环境保护具有重要的现实意义。
然而,含碳耐火材料的原料组成复杂,使用过程中性能相互制约,在提高抗氧化性能的同时,导致含碳耐火材料的其他性能下降。因此,研究者们除了通过调整不同抗氧化剂的含量和粒径优化抗氧化性能外,主要从抗氧化剂的复合化和含碳耐火材料微观结构演变方面不断尝试,在提高含碳耐火材料抗氧化性能的同时,协同提高其抗渣侵蚀性能和力学性能。
根据含碳耐火材料的氧化损毁机理,添加抗氧化剂法依旧是含碳耐火材料最常用的防氧化技术。金属抗氧化剂除了生成金属氧化物和碳化物阻止含碳耐火材料的氧化外,通过固相反应生成的陶瓷相产物还可以提高含碳耐火材料的力学性能和抗渣侵蚀性能,过渡金属和金属合金作为抗氧化剂还可以催化热解碳石墨化以及促进碳化物晶须的生成。碳化物抗氧化剂除了常见的碳化硅和碳化硼外,MAX相和Al与碳化物结合制备的复杂化合物不仅具有优异的抗氧化性能,还可以有效避免由金属碳化物水化导致的含碳耐火材料的开裂问题。含硼氧化物作为抗氧化剂不但可以生成致密的氧化层减缓氧气的渗透,而且容易通过离子迁移形成镁铝尖晶石。此外,纳米抗氧化剂和复合粉抗氧化剂更易于分散在含碳耐火材料基质中形成均质微观结构,从而改善其综合性能。
本文综述了含碳耐火材料的氧化损毁机理,主要分析了金属、碳化物和含硼氧化物三种类型抗氧化剂的研究现状,着重阐述了抗氧化剂在反应机理、微观结构演变方面的研究进展,最后提出了含碳耐火材料防氧化技术新的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代黎明
肖国庆
丁冬海
关键词:  含碳耐火材料  抗氧化剂  Al2O3-C  MgO-C  金属  碳化物  含硼氧化物    
Abstract: Carbon-containing refractories prepared by compounding MgO or Al2O3 with flake graphite have excellent thermal shock resistance and slag corrosion resistance. It is widely used in submersed nozzle, long nozzle, monolithic Stopper, slide gates and other functional refractories product for flow controlling and steel cleaning, as well as basic oxygen furnaces, electric furnaces, steel ladles and smelting industrial furnace lining. At the same time, as steel metallurgical tend to be more efficient and intelligent, higher requirements are placed on the slag corrosion resistance and thermal shock resistance of carbon-containing refractories. The damage of carbon-containing refractories often starts from the oxidation of graphite. The easily oxidized carbon not only expend flake graphite resources to release greenhouse gases, but also decrease the pro-perties of carbon-containing refractories and curtail the service life. Therefore, the development of oxidation resistance technology of carbon-containing refractories has important significance for improving the quality and efficiency of metallurgy industry and environmental protection.
However, the composition of the raw materials of the carbon-containing refractories is complicated, and the performances are mutually restric-ted during use. While improving theoxidation resistance, other properties of the carbon-containing refractories are reduced. Therefore, in addition to the optimization of the oxidation resistance by adjusting the content and grain size of different antioxidants, researchers have mainly explored the antioxidant composite and the microstructure evolution of carbon-containing refractories, improve slag corrosion resistance and mechanical properties.
According to the oxidative damage mechanism of carbon-containing refractories, the addition of antioxidant is still the most commonly used oxidation resistant technology for carbon-containing refractories. In addition to the formation of metal oxides and carbides to prevent the oxidation of carbon-containing refractory materials, metal antioxidants can also improve the mechanical properties and slag corrosion resistance of carbon-containing refractories by solid state reaction. The transition metals and metal alloys. As an antioxidant, it also has catalytic pyrolytic carbon graphitization and promotes the formation of carbide whiskers. In addition to the common silicon carbide and boron carbide, the MAX phase and the complex compounds prepared by Al with carbides not only have excellent oxidation resistance, but also can avoid material cracking by prevent the hydration of metal carbides. Boron-containing oxides can not only form a dense oxide layer to slow the penetration of oxygen, but also make it easier to form magnesia-alumina spinel through ion migration. In addition, nano antioxidants and composite powders antioxidants are easier to disperse in the matrix of carbon-containing refractories to form a even microstructure to improve comprehensive performance.
This review summarizes the oxidative damage mechanism of carbon-containing refractories; mainly analyzes the current research status of three types of antioxidants, including metals, carbides and boron-containing oxides, and focuses on the research progress of antioxidants in the reaction mechanism and microstructure evolution. Finally, a new research direction of oxidation resistance technology for carbon-containing refractories is proposed.
Key words:  carbon-containing refractories    antioxidants    Al2O3-C    MgO-C    metal    carbide    boron-containing oxide
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TQ175.14  
基金资助: 国家自然科学基金(51572212; 51772236); 陕西省教育厅重点实验室科研计划项目(15JS053)
作者简介:  代黎明,2017年毕业于广西大学,获得工学学士学位。现为西安建筑科技大学材料与矿资学院硕士研究生,在肖国庆教授的指导下进行研究。目前主要研究领域为碳/镁铝尖晶石复合粉在连铸功能耐火材料中的应用。
肖国庆,博士,西安建筑科技大学材料与矿资学院教授,博士研究生导师,2005年获西安交通大学材料科学与工程专业工学博士学位,同年晋升为教授,2008—2009英国谢菲尔德大学访问学者,兼任教育部无机非金属材料教学指导委员会秘书长、中国金属学会耐火材料分会副主任,中国耐火材料行业协会专家委员会成员,《耐火材料》、China's Refractories杂志编委。主要从事高温陶瓷材料的制备及应用研究。发表论文40余篇,其中有14篇被SCI检索,受邀在第六届耐火材料国际学术会议作主题报告,主持国家自然科学基金面上项目3项、陕西省重点研发计划项目重点项目1项,获国家教学成果二等奖1项、陕西省科学技术三等奖1项。
引用本文:    
代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
DAI Liming, XIAO Guoqing, DING Donghai. Review of Oxidation Resistance Technology of Carbon-containing Refractories. Materials Reports, 2021, 35(3): 3057-3066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120086  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3057
1 Semler C E.American Ceramic Society Bulletin,2014,93(2),34.2 Kasimagwa I, Brabie V, Jönsson P G.Ironmaking & Steelmaking,2014,41(2),121.3 Seon-Hwa H E O, Kyuyong L E E, Chung Y.Transactions of Nonferrous Metals Society of China,2012,22,s870.4 Chatterjee S, Eswaran R. Proc. Unified Int. Tech. Conf. Refractories, Salvador, BA,2009,pp.1.5 Yin R Y.Steelmaking,2012,28(5),2.(in Chinese)6 殷瑞钰. 炼钢,2012,28(5),2.6 Deo B.Transactions of the Indian Institute of Metals,2017,70(8),1965.7 Chen Y Q, Li H X, Liu G Q.Materials Reports A: Review Papers,2019,33(9),2847(in Chinese).陈勇强,李红霞,刘国齐.材料导报:综述篇,2019,33(9),2847.8 Um H, Lee K, Choi J, et al.ISIJ International,2012,52(1),62.9 Zhao S, Mei G, Sun J, et al.ISIJ International,2012,52(7),1186.10 Liao N, Li Y, Shan J, et al.Ceramics International,2018,44(3),3319.11 Kim E H, Cho G H, Lim H T, et al.Journal of Nanoscience and Nanotechnology,2015,15(1),514.12 Liu X, Zhang S, Li Y, et al.Ceramics International,2018,44(18),22567.13 Rastegar H, Bavand-vandchali M, Nemati A, et al.Physica E: Low-dimensional Systems and Nanostructures,2018,101,50.14 Bitencourt C S, Luz A P, Pagliosa C, et al.Ceramics International,2015,41(10),13320.15 Rastegar H, Bavand-vandchali M, Nemati A, et al.Ceramics Internatio-nal,2019,45(3),3390.16 Zhang Y, Li H, Li K Z, et al.New Carbon Materials,2012,27(2),105.17 Hu C, Niu Y, Huang S, et al.Journal of Alloys and Compounds,2015,646,916.18 Yang X, Ying L, Feng C.Composites Part B: Engineering,2015,79,204.19 Zhang J.Oxidation protection of carbon/carbon composites and non-destructive characterization methodology development. Ph.D. Thesis, Sorbonne University, FR,2019.20 Chen Y, Liu G, Zhen W, et al.Journal of Alloys and Compounds,2019,770,356.21 Deng Y Y, Wang H Z, Zhao H Z.Ceramics International,2008,34(3),573.22 Aslano<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1005-023X-35-3-3057"><mml:mover><mml:mrow><mml:mi mathvariant="normal">g</mml:mi></mml:mrow><mml:mrow><mml:mi>?</mml:mi></mml:mrow></mml:mover></mml:math></inline-formula>lu Z.Ceramics International,2011,37(8),3419.23 Zhao S M.Key Engineering Materials,2019,821,452.24 Gasparrini C, Chater R J, Horlait D, et al.Journal of the American Ceramic Society,2018,101(6),2638.25 Ding D H, Yang S Y, Xiao G Q.Materials Reports A: Review Papers,2017,31(6),95.(in Chinese).丁冬海,杨少雨,肖国庆.材料导报:综述篇,2017,31(6),95.26 Liu Z, Yu J, Yue S, et al.Ceramics International,2019,46(3),3091.27 Munoz V, Galliano P G, Brandaleze E, et al.Journal of the European Ceramic Society,2015,35(5),1621.28 Faghihi-Sani M A, Yamaguchi A.Journal of the Ceramic Society of Japan,2002,110(1284),699.29 Hu S, Zhu R, Liu R, et al.Ceramics International,2018,44(17),20641.30 Hou X, Chou K C.Corrosion Science,2010,52(3),1093.31 Hashemi B, Nemati Z A, Sadrnezhaad S K, et al.Journal of Materials Science and Technology,2006,22(6),826.32 Nemati Z A, Moetakef P.Computational Materials Science,2007,39(4),723.33 Zuo H, Wang C, Zhang J, et al.Ceramics International,2015,41(6),7929.34 Volkova O, Scheller P R, Lychatz B.Metallurgical and Materials Tran-sactions B,2014,45(5),1782.35 Li X, Rigaud M, Palco S.Journal of the American Ceramic Society,1995,78(4),965.36 Wang T, Yamaguchi A.Journal of the American Ceramic Society,2001,84(3),577.37 Pilli V, Sarkar R.Journal of Alloys and Compounds,2018,735,1730.38 Zhu T, Li Y, Sang S, et al.Journal of the European Ceramic Society,2014,34(16),4425.39 Zhu B, et al.International Journal of Materials Research,2014,105(6),593.40 Das R R, Nayak B B, Adak S, et al.Materials and Manufacturing Processes,2012,27(3),242.41 Zhu T, Li Y, Sang S.[J]ournal of Alloys and Compounds,2019,783,990.42 Patra S K.Effect of specially formulated graphite on the thermo mechanical properties of Al2O3-C slide gate plate refractory. Ph.D. Thesis, Nation Institute of Technology Rourkela, IN,2014.43 Sadrnezhaad S K, Bagheri N,International Journal of Engineering-Tran-sactions B: Applications,2011,24(4),357.44 Xiao J, Chen J, Wei Y, et al.Ceramics International,2019,45(17),21099.45 Liu H, Meng F, Li Q, et al.Ceramics International,2015,41(3),5186.46 Yu C, Ding J, Deng C, et al.Ceramics International,2018,44(1),1104.47 Stein V, Aneziris C G.Journal of Ceramic Science and Technology,2014,5(2),115.48 Calvo W A, Ortega P, Velasco M J, et al.Ceramics International,2018,44(8),8842.49 Muñoz V, Pena P, Martínez A G T.Ceramics International,2014,40(7),9133.50 Li X C, Zhu B Q, Zhao F.Materials Science Forum,2013,745,663.51 Gao S, Xu L, Chen M, et al.Materials Chemistry and Physics,2019,238,121935.52 Luz A P, Souza T M, Pagliosa C, et al.Ceramics International,2016,42(8),9836.53 Lu Y, Wang Y, Shen H, et al.Materials Science and Engineering: A,2014,590,368.54 Dawi K, Balat-Pichelin M, Charpentier L, et al.Journal of the European Ceramic Society,2012,32(2),485.55 Sakraker I, Asma C O.Journal of the European Ceramic Society,2013,33(2),351.56 Bo R, Shaobai S, Yawei L, et al.Ceramics International,2015,41(2),2892.57 Gokce A S, Gurcan C, Ozgen S, et al.Ceramics International,2008,34(2),323.58 Liu X, Zhong X.China's Refractories,2013(1),5.59 Liao N, Li Y, Jin S, et al.Journal of the American Ceramic Society,2017,100(1),443.60 Yu C, Zhu H, Yuan W, et al.Journal of Alloys and Compounds,2013,579,348.61 Zhang S, Yamaguchi A.Journal of the Ceramic Society of Japan,1996,104(1209),393.62 Chen J, Li N, Hubálková J, et al.Journal of the European Ceramic Society,2018,38(9),3387.63 Bagherabadi M H, Naghizadeh R, Rezaie H R, et al.Journal of the Australian Ceramic Society,2019,55(1),281.64 Bagherabadi M H, Naghizadeh R, Rezaie H R, et al.Journal of Ceramic Processing Research,2018,19(3),218.65 Campos K S, Silva G F B L, Nunes E H M, et al.Ceramics Internatio-nal,2012,38(7),5661.66 Dehsheikh H G, Ghasemi-Kahrizsangi S.Materials Chemistry and Phy-sics,2017,202,369.67 Ghasemi-Kahrizsangi S, Dehsheikh H G, Boroujerdnia M.Materials Chemistry and Physics,2017,189,230.68 Wei G, Zhu B, Li X, et al.Ceramics International,2015,41(1),1553.69 Kahrizsangi G S, Nemati A, Shahraki A, et al.International Journal of Nanoscience and Nanotechnology,2016,12(1),19.70 Liu Z, Yuan L, Yu J.Advances in Applied Ceramics,2019,118(5),249.71 Ghasemi-Kahrizsangi S,Ceramics International,2017,43(17),15472.72 Roungos V, Aneziris C G.Ceramics International,2012,38(2),919.73 Yu J, Yan Z, Ma B, et al.IOP Conference Series. Materials Science and Engineering.2011,18(22),222001.74 Paul A.Effect of bonding phases on the properties of Al2O3 based slide gate plates. Ph.D. Thesis, Nation Institute of technology rourkela, IN,2014.75 Ma B, Zhu Q, Sun Y, et al.Journal of Materials Science & Technology,2010,26(8),715.76 Li X C, Zhou F, Zhu B Q.Journal of the American Ceramic Society,2010,38(6),1070.77 Gao Y, Huang Z, Fang M, et al.Powder Technology,2012,226,269.78 Ding D, et al.Ceramics International,2019,45(13),16433.79 Liu Z, Deng C, Yu C, et al.Ceramics International,2018,44(12),13944.80 Ding D, Lv L, Xiao G, et al.International Journal of Applied Ceramic Technology,2019,17(2),645.81 Fu L, Gu H, Huang A, et al.Ceramics International,2019,46(1),959.
[1] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[2] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[3] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[4] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[5] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[6] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[7] 汪延明, 周智斌, 廖富达, 何鹏, 周波, 苗振林, 季辉. 氮化镓基金属基板蓝光LED变温变电流性能[J]. 材料导报, 2020, 34(Z2): 48-51.
[8] 彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
[9] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[10] 范燕, 徐昕荣, 石志峰, 刘佳, 李冰, 徐蒙蒙. 生物医用金属材料表面改性的研究进展[J]. 材料导报, 2020, 34(Z2): 327-329.
[11] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[12] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[13] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[14] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[15] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed