Association Analysis of Magnetic Induced Modulus of MREs and Fractal Features of Magnetic Particle Networks
LI Panyu1, YOU Shihui1,2, LI Wei1, ZHANG Shengdong1,2, ZENG Xianren1, LIU Bin3
1 College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China 2 College of Mechanical and Electrical Engineering, Zaozhuang University, Zaozhuang 277100, China 3 Wuhan Branch of Architectural Design and Research Institute of Guangdong Province, Wuhan 430000, China
Abstract: At present, constructing constitutive relations is still a difficulty for magneto-rheological elastomers. In this paper, magneto-induced modulus of MREs were studied under different conditions. And the association of the magneto-induced modulus and Fractal features parameters of MREs was studied by introducing the fractal theory of complex networks. The results show that the existence of peak value of the magneto-induced tensile (compression or shear) modulus of the magneto-rheological elastomers is related to the fractal dimension of the magnetic particles network and has nothing to do with the magnetic field.
李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
LI Panyu, YOU Shihui, LI Wei, ZHANG Shengdong, ZENG Xianren, LIU Bin. Association Analysis of Magnetic Induced Modulus of MREs and Fractal Features of Magnetic Particle Networks. Materials Reports, 2020, 34(Z2): 67-70.
1 Benoȋt B Mandelbrot.Science, 1967,156(3775),636. 2 Benoȋt B Mandelbrot, John W Van Ness.SIAM Review, 1968,10(4),422. 3 Benoȋt B Mandelbrot, James R Wallis.Water Resources Research, 1968,4(5),909. 4 Watts D J, Strogatz S H. Nature, 1998, 393, 440. 5 Barabási A L, Albert R. Science, 1999, 286,509. 6 Silva J, Simoes R, Lanceros-Mendez S, et al. Euro Physics Letters,2011, 93(3),37005. 7 宜晨虹, 苗天德, 慕青松.颗粒介质力链的复杂网络法研究.第二届颗粒材料计算力学会议论文集.兰州,2014. 8 Roberto Arévalo, Iker Zuriguel, Diego Maza. International Journal of Bifurcation & Chaos, 2009, 19(2),695. 9 Song C S, Havlin S, Makse H A.Nature Physics, 2006(2),275. 10 Boguñá M, Pastor-Satorras R, Vespignani A.Physical Review Letters, 2003,90(2),028701. 11 方爱丽, 孙丽珺. 计算机工程与应用, 2009,45(20), 52. 12 刘金龙.复杂网络的重分形分析算法研究及其应用.博士学位论文,湘潭大学, 2017. 13 张程.分形与重分形在复杂网络和交通中的应用.硕士学位论文,江苏大学, 2015. 14 贾全全,杨晓杰.安徽农业科学,2011,39(2),652. 15 Feder J. Fractal, Plenum Press, USA,1988. 16 Furuya S, Yakubo K. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011,84(2),036118. 17 Schneider C M, Kesselring T A, Jr A J, et al. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 86(1-2),016707. 18 Song C, Gallos L K, Havlin S, et al. Journal of Statistical Mechanics-theory and Experiment, 2007(3),03006. 19 Tél T, Fülöp Á, Vicsek T. Physica A Statistical Mechanics & Its Applications, 1989,159,155. 20 Liu J L, Yu Z G, Anh V. Chaos, 2015,25(2),392. 21 游世辉.磁敏橡胶力学性能的研究与应用.博士学位论文,华南理工大学, 2008.