Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 117-120    https://doi.org/10.11896/j.issn.1005-023X.2017.02.025
  材料研究 |
高强混凝土材料细观冻融损伤与抗压强度的关系*
秦晓川, 孟少平, 涂永明
东南大学土木工程学院, 南京 210096;
Relationship Between Mesoscopic Freeze-thaw Damage and Compressive Strength of High-strength Concrete Material
QIN Xiaochuan, MENG Shaoping, TU Yongming
School of Civil Engineering, Southeast University, Nanjing 210096;
下载:  全 文 ( PDF ) ( 1658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高强混凝土冻融损伤机理及其与抗压强度之间的关系,采用RapidAir结合金相显微镜的方法,实现对混凝土细观冻融损伤的连续观察,探究了细观结构对冻融的敏感程度以及细观破坏对宏观破坏的影响规律。结果表明:对高强混凝土而言,较低的含气量和较大的气泡间隔系数并不意味着较差的抗冻性;孔隙群的冻融响应敏感,且微裂缝出现较早,该区域的缺陷增长能与冻融前期混凝土抗压强度线性下降很好地对应,但此时混凝土的抗压强度下降并不明显;相对孤立的孔和砂浆与粗骨料的界面过渡区较不敏感,这些区域出现损伤后,混凝土的抗压强度逐渐非线性下降,预示着混凝土即将冻碎。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦晓川
孟少平
涂永明
关键词:  高强混凝土  冻融循环  细观损伤  定量分析  抗压强度    
Abstract: In order to figure out the freeze-thaw damage mechanism of high-strength concrete and its relationship with compressive strength, a method combining RapidAir and digital metalloscope was employed to investigate the meso-damages of concrete throughout the freeze-thaw test. The meso-structure′s sensitivity to freeze-thaw damage and the relationship between meso-damage and macro-damage were studied. Results show that high-strength concrete with low air content and large spacing factor does not result in poor freeze-thaw resistance. Pore groups are sensitive to freeze-thaw damage, and micro-cracks tend to appear early between them. This phenomenon corresponds well with the compressive strength loss in the early stage of freeze-thaw cycles (FTCs), but these micro-cracks will not lead to a drastic compressive strength loss. Isolated pore and interfacial transition zone are not sensitive to freeze-thaw damage. If these areas are damaged, the compressive strength will drop non-linearly, indicating the coming macroscopic failure.
Key words:  high-strength concrete    freeze-thaw cycle    mesoscopic damage    quantitative analysis    compressive strength
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TU502  
基金资助: *国家自然科学基金(50978224;51378104)
作者简介:  秦晓川:男,1985年生,博士研究生,主要从事混凝土材料及结构耐久性研究 E-mail:qinxc@seu.edu.cn 涂永明:通讯作者,男,1978年生,博士,副教授,主要从事混凝土材料及结构耐久性、桥梁安全等方面的研究 E-mail:tuyongming@seu.edu.cn
引用本文:    
秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
QIN Xiaochuan, MENG Shaoping, TU Yongming. Relationship Between Mesoscopic Freeze-thaw Damage and Compressive Strength of High-strength Concrete Material. Materials Reports, 2017, 31(2): 117-120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.025  或          http://www.mater-rep.com/CN/Y2017/V31/I2/117
1 Powers T C. Working hypothesis for further studies of frost resis-tance of concrete[J]. Am Concr Institute J,1945,16(4):245.
2 Jacobsen S, Sellevold E J,Matala S.Frost durability of high stren-gth concrete: Effect of internal cracking on ice formation[J]. Cem Concr Res,1996,26(6):919.
3 Hasan M, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. J Adv Concr Technol,2004,2(1):89.
4 Cao Dafu, Fu Lizhi, Yang Zhongwei. Experimental study on tensile properties of concrete after freeze-thaw cycles[J]. J Build Mater,2012,15(1):48(in Chinese).
曹大富, 富立志, 杨忠伟. 冻融循环作用下混凝土的受拉性能研究[J]. 建筑材料学报,2012,15(1):48.
5 Cao Dafu, Fu Lizhi, Yang Zhongwei, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. J Build Mater,2013,16(1):17(in Chinese).
曹大富,富立志,杨忠伟,等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报,2013,16(1):17.
6 Cao Dafu, Qin Xiaochuan, Meng Shaoping, et al. Evaluation of prestress losses in prestressed concrete specimens subjected to freeze-thaw cycles[J]. Struct Infrastructure Eng,2016,12(2):159.
7 冯乃谦,邢锋. 混凝土与混凝土结构的耐久性[M]. 北京:机械工业出版社,2009.
8 Cohen M D, Zhou Y, Dolch W L. Non-air-entrained high-strength concrete-Is it frost resistant?[J]. Aci Mater J,1992,89(4):406.
9 Jacobsen S, Marchand J, Hornain H. SEM observations of the microstructure of frost deteriorated and self-healed concretes[J]. Cem Concr Res,1995,25(8):1781.
10 Yang Zhifu, Weiss W J, Olek J.Water transport in concrete dama-ged by tensile loading and freeze-thaw cycling[J]. J Mater Civil Eng,2006,18(3):424.
11 Liu Lin, Shen Dejian, Chen Huisu, et al. Analysis of damage deve-lopment in cement paste due to ice nucleation at different temperatures[J]. Cem Concr Compos,2014,53:1.
12 Pigeon M, Talbot C, et al. Surface microstructure and scaling resistance of concrete[J]. Cem Concr Res,1996,26(10):1555.
13 Jacobsen S, Christian G H, et al. High strength concrete-freeze/thaw testing and cracking[J]. Cem Concr Res,1995,25(8):1775.
14 Li Shuguang, Chen Gaixin, et al. Quantitative damage evaluation of air-entrained concrete suffered freezing-thawing by digital-image-processing technique[J]. J Chinese Ceram Soc,2014,42(8):951.
15 Li Wenting, Sun Wei, Jiang Jinyang. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously[J]. Construct Build Mater,2011,25(5):2604.
16 Diamond S. Mercury porosimetry:An inappropriate method for the measurement of pore size distributions in cement-based materials[J]. Cem Concr Res,2000,30(10):1517.
17 Sicat E, Gong Fuyuan, Zhang Dawei, et al. Change of the coefficient of thermal expansion of mortar due to damage by freeze thaw cycles[J]. J Adv Concr Technol,2013,11(12):333.
18 Gong Fuyuan,et al.Stress analysis for concrete materials under multiple freeze-thaw cycles[J].J Adv Concr Technol,2015,13(3):124.
19 Suzuki T, Ogata H, Takada R, et al. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete[J]. Construction Build Mater,2010,24(12):2347.
20 ASTM. ASTMC457/C457M-12 Standard test method for microsco-pical determination of parameters of the air-void system in hardened concrete[S]. ASTM,2012.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[4] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[5] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[6] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[7] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[8] 关虓, 邱继生, 潘杜, 郑娟娟, 王民煌. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20): 3546-3552.
[9] 姜丰, 史亚龙, 张洪恩, 石宵爽, 王清远. 预吸水硅藻土对高强混凝土早期抗裂性能的影响[J]. 材料导报, 2018, 32(20): 3541-3545.
[10] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[11] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[12] 刘 娜,姜自超,汪宏涛,戴丰乐. 磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析[J]. 《材料导报》期刊社, 2017, 31(24): 45-49.
[13] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[14] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[15] 南雪丽, 王超杰, 刘金欣, 韩博, 杨蓝蓝. 冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 177-181.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed