Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23100087-7    https://doi.org/10.11896/cldb.23100087
  无机非金属及其复合材料 |
电致变色材料微纳结构设计及多波段调控应用研究进展
蔡轩皓, 娄兴, 覃继宁, 周涵*
上海交通大学金属基复合材料国家重点实验室,上海 200240
Research Progress of Electrochromic Materials: Structural Design and Multispectral Modulation Applications
CAI Xuanhao, LOU Xing, QIN Jining, ZHOU Han*
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 5518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电致变色材料具有在外电场下光响应性质可逆变化的特性,由于其响应可控、能耗小、多波段可兼容等优势在光热管理应用方面极具发展潜力。然而,传统的电致变色材料存在调控慢、变色单一、调控波段窄的局限性,限制了电致变色技术的进一步发展。近年来,微纳结构化的电致变色材料实现了循环性能改善、灵活的响应光谱选择性等优势,成为一种行之有效的调控手段并引起了研究者重点关注。本文介绍了电致变色器件(ECD)的基本结构,并围绕扩散动力学、结构色设计、局域表面等离激元共振机理对近几年ECD结构设计的研究进展进行重点论述,分析了多波段兼容响应ECD潜在的应用前景。最后,总结了电致变色材料目前面临的挑战并展望其未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡轩皓
娄兴
覃继宁
周涵
关键词:  电致变色材料  微纳结构设计  多波段兼容响应  扩散动力学  结构色设计  局域表面等离激元共振    
Abstract: Electrochromic materials are capable of change reversibly inoptical properties under an applied electric field. Due to controllable response, low energy consumption and multispectral modulation, the development potential of electrochromic materials for applications in optical and thermal management is enormous. However, conventional electrochromic materials have some noticeable problems such as slow regulation, single color change, and narrow regulation band, which hinder the further development of electrochromic technology. In recent years, nanostructured electrochromic materials have achieved advantages such as improved cycling performance and flexible response spectral selectivity, becoming an effective modulation method and attracting significant attention from researchers. This review summarizes the basic structure and research progress of structural design based on mechanisms such as diffusion kinetics, structural color design and localized surface plasmon resonance of electrochromic devices (ECDs) in recent years. It also discussed the potential applications of multispectral modulation ECDs, and finally proposed the main challenges of electrochromic materials and the future development directions.
Key words:  electrochromic materials    nanostructural design    multispectral modulation    diffusion kinetics    structural color design    localized surface plasmons resonance
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52172120)
通讯作者:  *周涵,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师、国家高层次人才支持计划青年拔尖人才项目获得者。2010年获得上海交通大学和美国加州大学戴维斯分校联合培养博士学位。在PNAS、Adv. Mater. 等发表SCI文章90余篇,主要研究方向为仿生材料与智能材料、超材料、热调控材料。hanzhou_81@sjtu.edu.cn   
作者简介:  蔡轩皓,2020年获得武汉理工大学学士学位,现为上海交通大学材料科学与工程学院硕士研究生,主要研究领域为电调控超材料。
引用本文:    
蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
CAI Xuanhao, LOU Xing, QIN Jining, ZHOU Han. Research Progress of Electrochromic Materials: Structural Design and Multispectral Modulation Applications. Materials Reports, 2024, 38(21): 23100087-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100087  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23100087
1 Hasani A, Quyet Van L, Thang Phan N, et al. Scientific Reports, 2017, 7(1), 13258.
2 Deb S K. Applied Optics, 1969, 8(101), 192.
3 Schirmer O F, Wittwer V, Baur G. Journal of the Electrochemical Society, 1977, 124(5), 749.
4 Burke L D, Murphy O J. Journal of Electroanalytical Chemistry, 1980, 109(1), 373.
5 Pande G K, Kim N, Choi J H, et al. Solar Energy Materials and Solar Cells, 2019, 197, 25.
6 Wei H, Gu J, Ren F, et al. Small, 2021, 17(35), 2100446.
7 Cong S, Geng F, Zhao Z. Advanced Materials, 2016, 28(47), 10518.
8 Thongpan W, Louloudakis D, Pooseekheaw P, et al. Materials Letters, 2019, 257, 126747.
9 Kadam A V. Journal of Applied Electrochemistry, 2017, 47(3), 335.
10 Wang Z, Wang X, Cong S, et al. Nature Communications, 2020, 11(1), 302.
11 Zhang W, Li H, Hopmann E, et al. Nanophotonics, 2021, 10(2), 825.
12 Nuroldayeva G, Balanay M P. Polymers, 2023, 15(13), 2924.
13 Gong H, Li W, Fu G, et al. Journal of Materials Chemistry A, 2022, 10(12), 6269.
14 Dong W, Lv Y, Zhang N, et al. Journal of Materials Chemistry C, 2017, 5(33), 8408.
15 Ortiz J, Acosta D, Magana C. Journal of Solid State Electrochemistry, 2022, 26(8), 1667.
16 Roldan R, Romanyuk Y E. Journal of the Electrochemical Society, 2016, 163(8), E235.
17 Rajan K P, Neff V D. Journal of Physical Chemistry, 1982, 86(22), 4361.
18 Wang Y, Zeng J, Zhou Z, et al. Applied Surface Science, 2022, 573, 151603.
19 Cai G F, Wang X L, Zhou D, et al. RSC Advances, 2013, 3(19), 6896.
20 Cai G F, Tu J P, Zhou D, et al. Solar Energy Materials and Solar Cells, 2014, 124, 103.
21 Pan J, Wang Y, Zheng R, et al. Journal of Materials Chemistry A, 2019, 7(23), 13956.
22 Zhang X, Dou S, Li W, et al. Electrochimica Acta, 2019, 297, 223.
23 Shi Y, Sun M, Zhang Y, et al. Solar Energy Materials and Solar Cells, 2020, 212, 110579.
24 De Rooij D M R. Anti-Corrosion Methods and Materials, 2003, 50(5), 1.
25 Sun J, Bhushan B, Tong J. RSC Advances, 2013, 3(35), 14862.
26 Kim Y, Moon C W, Kim I S, et al. Chemical Communications, 2022, 58(86), 12014.
27 Han M G, Heo C J, Shim H, et al. Advanced Optical Materials, 2014, 2(6), 535.
28 Chen K, He J, Zhang D, et al. Nano Letters, 2021, 21(10), 4500.
29 Xiao L, Lv Y, Lin J, et al. Advanced Optical Materials, 2018, 6(1), 1700791.
30 Kuno T, Matsumura Y, Nakabayashi K, et al. Angewandte Chemie International Edition, 2016, 55(7), 2503.
31 Ran X, Ren J, Zhang S, et al. ACS applied Materials & Interfaces, 2023, 15(35), 41763.
32 Qu H Y, Wang J, Montero J, et al. Journal of Applied Physics, 2021, 129(12), 123105.
33 Willets K A, Van Duyne R P. Annual Review of Physical Chemistry, 2007, 58, 267.
34 Agrawal A, Johns R W, Milliron D J. Annual Review of Materials Research, 2017, 47(1), 1.
35 Jiang N, Zhuo X, Wang J. Chemical Reviews, 2018, 118(6), 3054..
36 Deonikar V G, Puguan J M C, Kim H. Acta Materialia, 2021, 207, 116693.
37 Zydlewski B Z, Lu H C, Celio H, et al. Journal of Physical Chemistry C, 2022, 126(34), 14537.
38 Peng J, Jeong H H, Smith M, et al. Advanced Science, 2021, 8(2), 2002419.
39 Agrawal A, Cho S H, Zandi O, et al. Chemical Reviews, 2018, 118(6), 3121.
40 Tsuboi A, Nakamura K, Kobayashi N. Advanced Materials, 2013, 25(23), 3197.
41 Unser S, Bruzas I, He J, et al. Sensors, 2015, 15(7), 15684..
42 Khandelwal H, Schenning A P H J, Debije M G. Advanced Energy Materials, 2017, 7(14), 1602209.
43 Thummavichai K, Xia Y, Zhu Y. Progress in Materials Science, 2017, 88, 281.
44 Bai T, Li W, Fu G, et al. ACS Applied Materials & Interfaces, 2022, 14(46), 52193.
45 Rao Y, Dai J, Sui C, et al. ACS Energy Letters, 2021, 6(11), 3906.
46 Wang L, Zhou J, Liang J, et al. Applied Surface Science, 2013, 280, 151.
47 Chandrasekhar P, Zay B J, Lawrence D, et al. Journal of Applied Polymer Science, 2014, 131(19), 40850.
48 Chandrasekhar P, Zay B J, Birur G C, et al. Advanced Functional Materials, 2002, 12(2), 95.
49 Chein Sheng Ly K, Zhang H, Liu X, et al. Journal of the American Ceramic Society, 2021, 104(5), 2143.
50 Zhuang Y, Wang L, Lv Y, et al. Advanced Functional Materials, 2018, 28(8), 1705769.
51 Song S, Hao T, Wang B, et al. Advanced Optical Materials, 2023, DOI.ORG/10.1002/adom.202301065.
52 Lu L, Wang K, Wu H, et al. Chemical Science, 2021, 12(20), 7058.
53 Jeon S, Lee S E, Kim W, et al. Nanophotonics, 2023, 12(15), 3199.
54 Wu N, Ma L, Zhao S, et al. Solar Energy Materials and Solar Cells, 2019, 195, 114.
55 Ergoktas M S, Bakan G, Kovalska E, et al. Nature Photonics, 2021, 15(7), 493.
[1] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[2] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed