Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080033-8    https://doi.org/10.11896/cldb.23080033
  金属与金属基复合材料 |
轻质中锰钢局部变形带的研究现状
周宇航, 杨明维, 冯运莉*
华北理工大学冶金与能源学院,现代冶金技术教育部重点实验室,河北 唐山 063210
Advances in Research of Local Deformation Zone in Lightweight Medium Manganese Steels
ZHOU Yuhang, YANG Mingwei, FENG Yunli*
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 8862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轻质中锰钢是第三代先进高强钢的代表,在变形过程中由于C、Mn、Al等合金元素的存在其可动位错经历被固溶原子和C-Mn原子团钉扎和脱扎的过程,从而在应力-应变曲线上呈现出吕德斯(Lüders)带和Portrvin-Le Chatelier(PLC)带这两种最典型的局部变形带,导致材料表面质量降低,对后续加工使用不利。目前,消除Lüders带和PLC带引起的表面缺陷的常用方法是在成形前对材料施加小的预应变或者调控材料的组织。然而这种方法只适用于经历小Lüders带应变和PLC效应的材料,因此寻求一种更为有效的延迟或消除Lüders带与PLC带的方法显得极其重要。本文从发生机理入手,讨论预应变、退火温度、退火时间等工艺和合金元素对上述两种局部变形带的影响,进而从晶粒尺寸、组织形貌、位错密度等微观角度总结减弱或加剧二者的具体机制,并着重解释不同成分与热处理工艺对C-Mn原子团形成、移动速率和与位错交互时间的影响以及抑制局部变形带的形成与拓展的作用。随后根据已有研究提出的不同解决方案,结合上述宏观与微观影响因素,展望了未来该领域研究的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宇航
杨明维
冯运莉
关键词:  轻质中锰钢  Lüders带  PLC带  C-Mn原子团  TRIP效应    
Abstract: Lightweight medium manganese steels are a representative of the third generation advanced high-strength steels. They have been found to exhibit Lüders bands and Portevin-Le Chatelier (PLC) bands on their stress-strain curves during deformation. The two types of bands originate from the presence of alloying elements such as C, Mn, Al, and can be regarded as a symbol of interaction between dislocations being pinned and depinned by C-Mn atomic group. Therefore these bands lead to surface defects that reduce the quality of the materials and are unfavorable for subsequent processing. Nowadays, the commonly used methods to eliminate surface defects caused by Lüders bands and PLC bands involve applying a small pre-strain to the material or controlling its microstructure before forming. But this approach is only effective for materials experiencing low strains from Lüders bands and PLC effects, and it has become highly important to seek a more effective method to delay or eliminate Lüders bands and PLC bands. This paper discusses the influencing factors of pre-strain, annealing temperature, annealing time length, and alloying elements on Lüders bands and PLC bands, starting with an outline to the underlying occurrences causing these bands. It further summarizes the specific reasons for mitigating or intensifying these bands from a microscopic perspective, including grain size, microstructure morphology, and dislocation density. The paper also emphasizes the effects of different alloy compositions and heat treatment processes on the formation, migration rate, and interaction time of C-Mn atomic group with dislocations, as well as the corresponding utilities in suppressing the formation and propagation of local deformation zone. It ends with a prospective discussion about the future development of the field based on the solutions provided in the published researches, and considering the aforementioned macroscopic and microscopic influencing factors.
Key words:  lightweight medium manganese steel    Lüders band    PLC band    C-Mn atomic group    TRIP effect
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51974134);河北省科技重大专项(21281008Z)
通讯作者:  *冯运莉,华北理工大学教授、博士研究生导师,学科带头人,国家级特色专业-金属材料工程专业负责人。2001年在华北理工大学金属材料及加工工程系工作至今。在国内外学术期刊上发表论文200余篇,出版专著及教材3部,获得国家发明专利授权9项。团队主要研究方向包括磁性材料、超细晶/纳米晶金属材料、材料加工新技术与组织性能控制、材料表面处理、汽车轻量化研究、高熵合金及高性能钢铁材料的开发等。近年承担国家自然科学基金面上项目6项,河北省杰出青年基金、支撑计划等省部级项目11项,市厅级及横向科研项目30余项。获河北省科技进步二等奖3项、三等奖3项,国家冶金科学技术三等奖1项。fengyl@ncst.edu.cn   
作者简介:  周宇航,华北理工大学硕士研究生。2016年9月至2020年6月于华北理工大学获得材料成型及控制工程学士学位。目前研究方向为第三代汽车钢轻量化。
引用本文:    
周宇航, 杨明维, 冯运莉. 轻质中锰钢局部变形带的研究现状[J]. 材料导报, 2024, 38(21): 23080033-8.
ZHOU Yuhang, YANG Mingwei, FENG Yunli. Advances in Research of Local Deformation Zone in Lightweight Medium Manganese Steels. Materials Reports, 2024, 38(21): 23080033-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080033  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080033
1 Wu Z W, J Y. Shandong Metallurgy, 2019,41(3), 26 (in Chinese).
吴张炜, 金炀. 山东冶金, 2019,41(3), 26.
2 Wang L, Zhu X D, Zhang P J. Baosteel Technology, 2003(5), 53 (in Chinese).
王利, 朱晓东, 张丕军, 等. 宝钢技术, 2003(5), 53.
3 Fan Z J, Gui L J, Su R Y. Journal of Automotive Safety and Energy, 2014, 5(1), 1 (in Chinese).
范子杰, 桂良进, 苏瑞意. 汽车安全与节能学报, 2014, 5(1), 1.
4 Pan E B, Di H S, Jiang G W, et al. Acta Metallurgica Sinica (English Letters), 2014, 27(3), 469.
5 Chen L Q, Zhao Y, Qin X M. Acta Metallurgica Sinica (English Letters), 2013, 26(1), 1.
6 Koyama M, Sawaguchi T, Tsuzaki K. ISIJ International, 2018, 58(8), 1383.
7 Yang F, Luo H, Pu E. International Journal of Plasticity, 2018, 103, 18.
8 Brindley B, Worthington P. Scripta Metallurgica, 1970, 4(4), 295.
9 Meng X, Liu B, Luo L, et al. Journal of Materials Science & Technology, 2018, 34(12), 2307.
10 Kang J, Wilkinson D S, Embury J D, et al. Scripta Materialia, 2005, 53(5), 499.
11 Sun B, Vanderesse N, Fanzeki F, et al. Scripta Materialia, 2017, 133, 9.
12 Härtel M, Illgen C, Frint P, et al. Metals, 2018, 8(2), 88.
13 Shi J,Sun X, Wang M, et al. Scripta Materialia, 2010, 63(8), 815.
14 Zou Y, Ding H, Tang Z. Metals, 2021, 11(4), 667.
15 Li N, Shi J, Chen W L, et al. Hot Working Technology, 2012, 41(2), 5 (in Chinese).
李楠, 时捷, 陈为亮, 等. 热加工工艺, 2012, 41(2), 5.
16 Xv Z Y. Heat Treatment, 1999, 54(2), 1.
徐祖耀. 热处理, 1999, 54(2), 1.
17 Cai Z, Ding H, Misra R, et al. Scripta Materialia, 2014, 71, 5.
18 Sachdev A K. Metallurgical Transactions A, 1982, 13(10), 1793.
19 Lfe S J, Kim J, Kane S N, et al. Acta Materialia, 2011, 59(17), 6809.
20 Chen L, Kim H S, Kim S K, et al. ISIJ International, 2007, 47(12), 1804.
21 Yang F, Zhou J, Han Y, et al. Materials Letters, 2020, 258, 126804.
22 Sun B, Fzeli F, Scott C, et al. Materials Science and Engineering A, 2018, 729, 496.
23 Sugimoto K I, Tanino H. Metals, 2021, 11(7), 1143.
24 Field D M, Van Aken D C. Metallurgical and Materials Transactions A, 2018, 49, 1152.
25 Frommeyer G, Drewes E. Metallurgical Research & Technology, 2000, 97(10), 1245.
26 Chu C, Huang H, Kao P, et al. Scripta Metallurgica et Materialia, 1994, 30(4), 505.
27 Frommeyer G, Brüx U. Steel Research International, 2006, 77(9-10), 627.
28 Bhattacharyya T, Singh S B, Das S, et al. Materials Science and Engineering A, 2011, 528(6), 2394.
29 Zhang M H. High-energy X-ray diffraction studies on the microstructure and mechanical behavior of medium-Mn steels. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
张明赫. 基于高能 X 射线的中锰钢组织与力学行为研究. 博士学位论文, 北京科技大学, 2019.
30 Li Z C, Ding H, Cai Z H. Materials Science and Engineering A, 2015, 639, 559.
31 Lebedkina T, Lebyodkin M, Chateau J P, et al. Materials Science and Engineering A, 2009, 519(1-2), 147.
32 Sevsek S, Brassche F, Haase C, et al. Materials Science and Engineering A, 2019, 746, 434.
33 Jung I C, De Cooman B C. Acta Materialia, 2013, 61(18), 6724.
34 Koyama M, Sawaguchi T, Tsuzaki K. ISIJ International, 2015, 55(8), 1754.
35 Song W, Houston J E. Metals, 2018, 8(5), 292.
36 Cai Z H, Ding H, Misra R D K, et al. Materials Science and Engineering A, 2016, 652, 205.
37 Li J, Song R, Li X, et al. Materials Science and Engineering A, 2019, 745, 212.
38 Li Z C, Ding H, Misra R D K, et al. Materials Science and Engineering A, 2017, 682, 211.
39 Cai Z, Ding H, Xue X, et al. Scripta Materialia, 2013, 68(11), 865.
40 Cai Z H, Ding H, Misra R D K, et al. Acta Materialia, 2015, 84, 229.
41 Shao C, Hui W, Zhang Y, et al. Materials Science and Engineering A, 2017, 682, 45.
42 Li X, Song R, Zhou N, et al. Scripta Materialia, 2018, 154, 30.
43 Chao C Y, Liu C H. Materials Transactions, 2002, 43(10), 2635.
44 Yi H, Ghosh S, Liu W, et al. Materials Science and Technology, 2010, 26(7), 817.
45 Kozłowska A, Grzegorczyk B, Morawiec M, et al. Materials, 2019, 12, 4175.
46 Chatterjee S, Murugananth M, Bhadeshia H K D H. Materials Science and Technology, 2007, 23(7), 819.
47 Kim D H, Kang J H, Ryu J H, et al. Materials Science and Engineering A, 2020, 774, 138930.
48 Xu Y, Zou Y, Hu Z, et al. Materials Science and Engineering A, 2017, 698, 126.
49 Steineder K, Krizan D, Schneider R, et al. Acta Materialia, 2017, 139, 39.
50 Luo H, Dong H, Huang M. Materials & Design, 2015, 83, 42.
51 Li Z, Ding H, Misra R, et al. Materials Science and Engineering A, 2017, 679, 230.
52 Hu B, He B, Cheng G, et al. Acta Materialia, 2019, 174, 131.
53 Yan S, Liang T, Wang Z, et al. Materials Science and Engineering A, 2020, 773, 138732.
54 Yang F, Song R, Li Y, et al. Materials & Design, 2015, 76, 32.
55 Yan S, Liu X, Liang T, et al. Materials Science and Engineering A, 2018, 712, 332.
56 Zhang X, Teng R, Liu T, et al. Materials Characterization, 2022, 184, 111661.
57 Han J, Kang S H, Lee S J, et al. Journal of Alloys and Compounds, 2016, 681, 580.
58 Luo H, Shi J, Wang C, et al. Acta Materialia, 2011, 59(10), 4002.
59 Wang W J, Cen Q Y, Zhang M, et al. Materials for Mechanical Enginee-ring, 2023, 47(5), 61 (in Chinese).
王魏军, 岑琼瑛, 张梅, 等. 机械工程材料, 2023, 47(5), 61.
60 Juho T, Pertti N, Gersom P, et al. Metallurgical and Materials Transactions A, 2005, 36(2), 421.
61 Choi J Y, Lee, J, Lee K, et al. Materials Science and Engineering A, 2016, 666, 280.
62 Poling W A, De Moor E, Speer J G, et al. Metals, 2021, 11, 375.
63 Grzegorczyk B, Kozłowska A, Morawiec M, et al. Metals, 2019, 9(1), 2.
64 De Cooman B C, Gibbs P, Lee S, et al. Metallurgical and Materials Transactions A, 2013, 44(6), 2563.
65 Cai M, Huang H, Su J, et al. Journal of Materials Science & Technology, 2018, 34(8), 1428.
66 Chandan A K, Bansal, G K, Kundu J, et al. Materials Science and Engineering A, 2019, 768, 138458.
67 Han J, Lee S J, Jung J G, et al. Acta Materialia, 2014, 78, 369.
68 Yan S, Li T, Liang T, et al. Materials Science and Engineering A, 2019, 758, 79.
69 Wan X, Liu G, Yang Z, et al. Scripta Materialia, 2021, 198, 113819.
70 Wang Y, Zhang M, Cen Q, et al. Materials Science and Engineering A, 2022, 839, 142849.
71 Liu J, Zhu G, Mao W, et al. Materials Science and Engineering A, 2014, 607, 302.
72 Min J, Liu J, Sun B. Mechanics of Materials, 2014, 68, 164.
73 Sun Q, Aslan A, Li M, et al. Science China Technological Sciences, 2014, 57(4), 671.
[1] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed