Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23020075-19    https://doi.org/10.11896/cldb.23020075
  金属与金属基复合材料 |
超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数
刘春泉1,*, 熊芬1,*, 彭龙生2, 黄伟2, 林英华3
1 湖南工学院材料科学与工程学院,湖南 衡阳 421002
2 湖南力方轧辊有限公司(湖南省高耐磨合金材料先进制造工程技术研究中心),湖南 衡阳 421681
3 南华大学机械工程学院,湖南 衡阳 421001
The Latest Research Progress of Extreme High-speed Laser Material Deposition:Key Technical Features and Advantages, Equipment Development and Technical Parameters
LIU Chunquan1,*, XIONG Fen1,*, PENG Longsheng2, HUANG Wei2, LIN Yinghua3
1 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 Hunan Lifang Roll Co., Ltd.,(Hunan Advanced Manufacturing Engineering Technology Research Center of High Wear-resistant Alloy Materials), Hengyang 421681, Hunan, China
3 School of Mechanical Engineering, University of South School, Hengyang 421001, Hunan, China
下载:  全 文 ( PDF ) ( 125846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高速激光熔覆技术是近年新开发的表面涂层技术,本质是通过改变粉末的熔化位置,使粉末在工件上方与激光交汇发生熔化,随之均匀涂覆在工件表面,从而具有优质高效、绿色低成本、高质量和高适应性、低热输入和低激光功率、低稀释率和高性能等特点。首先,简要介绍了超高速激光熔覆关键技术特点及技术优势、国内外超高速激光熔覆装备发展现状;其次,结合最新研究成果重点阐述了影响超高速激光熔覆制备的涂层最终组织结构与性能的关键技术参数(所采用的熔覆材料、激光功率、搭接率、光斑直径、熔覆速度、送粉量和送粉压力等);最后,详细介绍了超高速激光熔覆制备的涂层质量检测参数,包括熔覆层厚度、结合强度、孔隙率、稀释率、表面粗糙度、硬度、耐磨性和耐腐蚀性等熔覆效果。通过综述超高速激光熔覆技术的特点、优势以及关键技术参数,以期为超高速激光熔覆技术的进一步改进与提升、设备研制等方面取得更多进展提供借鉴和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春泉
熊芬
彭龙生
黄伟
林英华
关键词:  超高速激光熔覆  涂层  特点与优势  关键技术参数    
Abstract: Extreme high-speed laser material deposition technology is a newly developed surface coating technology in recent years. The essence is that by changing the melting position of the powder, the powder intersects with the laser above the workpiece and melting occurs, and then uniformly coated on the surface of the workpiece, thus featuring high quality and efficiency, green and low cost, high quality and adaptability, low heat input and low laser power, low dilution rate and high performance. Firstly, it briefly introduces the key technology features and technical advantages of extreme high-speed laser material deposition, the development status of ultra-high-speed laser cladding equipment at home and abroad; secondly, the key technical parameters such as melting material, laser power, lap rate, spot diameter, melting speed, powder feeding volume and powder feeding pressure, which affect the final structure and properties of coatings prepared by ultra-high speed laser melting, are highlighted with the latest research results; finally, the quality inspection parameters of coatings prepared by ultra-high speed laser melting are introduced in detail, including the melting effect of melting layer thickness, bond strength, porosity, dilution rate, surface roughness, hardness, wear resistance and corrosion resistance, etc.. By summarizing the characteristics, advantages and key technical parameters of extreme high-speed laser material deposition technology, with a view to providing reference and guidance for further improvement and enhancement of extreme high-speed laser material deposition technology and more progress in equipment development.
Key words:  extreme high-speed laser material deposition    coatings    features and advantages    key technical parameters
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG174.4  
基金资助: 湖南省科技人才托举工程项目“小荷”科技人才专项(2023TJ-X10);湖南省自然科学基金(2023JJ50108);湖南省创新型省份建设专项科普专题项目(2023ZK4316);湖南省高耐磨合金材料先进制造工程技术研究中心创新能力提升项目(2023ZYQ030); 2022年衡阳市“小荷”科技人才项目(衡市科协字〔2022〕68 号);湖南省“机械工程”学科科技创新平台开放课题(KFKA2205);湖南工学院青年自科培育项目(2022HY007);湖南省大学生创新创业项目(S202411528078X;S202411528026)
通讯作者:  *刘春泉,湖南工学院材料科学与工程学院副教授。2015年6月于湖南工业大学冶金工程专业本科毕业,2020年6月于武汉科技大学冶金工程专业博士毕业后到湖南工业大学工作,2021年8月到湖南工学院工作至今。目前主要从事金属基新型材料的制备工艺的研究,主要包括第三代先进高强钢的研发、激光增材制造及再制造、纳米材料制备、稀贵金属的回收利用、稀贵金属衍生产品开发等方面。发表论文20余篇,被SCI/EI收录11篇。liuchunquan@hnit.edu.cn;
熊芬,湖南工学院材料科学与工程学院专任教师。2015年6月于湖南工业大学冶金工程本科毕业,2019年6月于武汉科技大学材料工程专业硕士毕业后到湖南永盛新材料股份有限公司担任研发工程师,2021年8月到湖南工学院工作至今。目前主要从事超聚酰亚胺薄膜(PI膜)表面金属化处理以及类石墨烯MoS2光电薄膜的制备等方面研究。发表论文10篇,被SCI收录3篇。1814966464@qq.com   
引用本文:    
刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
LIU Chunquan, XIONG Fen, PENG Longsheng, HUANG Wei, LIN Yinghua. The Latest Research Progress of Extreme High-speed Laser Material Deposition:Key Technical Features and Advantages, Equipment Development and Technical Parameters. Materials Reports, 2024, 38(17): 23020075-19.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020075  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23020075
1 Yan Q, Yang K, Wang Z D, et al. Optics & Laser Technology, 2022, 149, 107823.
2 Yuan W, Li R, Zhu Y, et al. Surface and Coatings Technology, 2022, 438, 128363.
3 Jin L, Jiang K, Ren H, et al. International Journal of Electrochemical Science, 2022, 17(220920), 2.
4 Fu K, Zhong C, Zhang L, et al. Journal of Materials Research and Technology, 2023, 24, 1093.
5 Jy A, Bing B A, Hua K A, et al. Optics & Laser Technology, 2021, 144, 107431.
6 Du C, Hu L, Ren X, et al. Surface and Coatings Technology, 2021, 424, 127617
7 Nickels L. Metal Powder Report, 2020, 75(2), 79.
8 Meng L, Sheng P, Zeng X. Journal of Materials Research and Technology, 2022, 16, 1732.
9 Wang Y. Study on heat and mass transfer and solidification microstructure evolution of ultra high speed laser cladding. Master's Thesis, Shijiazhuang Tiedao University, China, 2022(in Chinese).
王瑶. 超高速激光熔覆传热传质与熔覆层凝固组织演变研究. 硕士学位论文, 石家庄铁道大学, 2022.
10 Schopphoven T, Gasser A, Backes G. Laser Technik Journal, 2017, 14(3), 45.
11 Zhu L D, Xue P S, Lan Q, et al. Optics and Laser Technology, 2021, 138, 106915.
12 Raykis O. Laser Technik Journal, 2017, 14(1), 28.
13 Guo Y M, Ye F X, Qi H. China Surface Engineering, 2022, 35(6), 39(in Chinese).
郭永明, 叶福兴, 祁航. 中国表面工程, 2022, 35(6), 39.
14 Huang X, Zhang J C, Lian G F, et al. Machine Tool & Hudraulics, 2021, 49(6), 151(in Chinese).
黄旭, 张家诚, 练国富, 等. 机床与液压, 2021, 49(6), 151.
15 Wu Y, Liu Y, Chen W J, et al. Electric Welding Machine, 2020, 50(3), 1(in Chinese).
吴影, 刘艳, 陈文静, 等. 电焊机, 2020, 50(3), 1.
16 Wu X H. Paper Equipment & Materials, 2022, 51(3), 79(in Chinese).
吴学宏. 造纸装备及材料, 2022, 51(3), 79.
17 Vogt S, Göbel M, Fu E. Journal of Manufacturing Science and Engineering, 2022, 144(4), 044501.
18 Liang Y, Liao Z Y, Zhang L L, et al. Optics & Laser Technology, 2023, 164, 109472.
19 Xu X, Lu H, Su Y, et al. Corrosion Science, 2022, 195, 109976.
20 Shen B, Du B, Wang M, et al. Frontiers in Materials, 2019, 6, 248.
21 Ge T, Chen L, Gu P, et al. Optics & Laser Technology, 2022, 150, 107919.
22 Liu M X, Li Z, Chang G R, et al. International Journal of Electrochemical Science, 2022, 17(220537), 2.
23 Yuan W, Li R, Chen Z, et al. Surface and Coatings Technology, 2021, 405, 126582.
24 Wang K, Du D, Liu G, et al. Corrosion Science, 2020, 176, 108922.
25 Xiao M, Gao H, Sun L, et al. Materials Letters, 2021, 297, 130002.
26 Wang Y Y, Niu Q, Yang G J, et al. Materials Research and Application, 2019, 13(3), 8(in Chinese).
王豫跃, 牛强, 杨冠军, 等. 材料研究与应用, 2019, 13(3), 8.
27 Constantin Häfner. Annual Report 2020, Fraunhofer-Institut für Lasertechnik ILT, Steinbachstraβe 15, 52074 Aachen, Germany, 2020.
28 More S R, Bhatt D V, Menghani J V. Materials Today:Proceedings, 2017, 4(9), 9902.
29 Yue K, Lian G, Feng M, et al. Metallurgical Research & Technology, 2022, 119(1), 113.
30 Li T, Zhang L, Bultel G G P, et al. Coatings, 2019, 9(12), 778.
31 Ren Y, Chang S, Wu Y, et al. Surface and Coatings Technology, 2022, 440, 128496.
32 Shen F, Tao W, Li L, et al. Applied Surface Science, 2020, 517, 146085.
33 Li T, Zhang L, Chen G, et al. Journal of Manufacturing Processes, 2022, 78, 265.
34 Sommer N, Stredak F, Böhm S. Coatings, 2021, 11(8), 952.
35 Lampa C, Smirnov I. Journal of Laser Applications, 2019, 31(2), 022511.
36 Schaible J, Sayk L, Schopphoven T, et al. Journal of Laser Applications, 2021, 33, 012021.
37 Asghar O, Yan L, Yasir M, et al. Coatings, 2020, 10, 638.
38 Song Y, Li X, Hu C, et al. Journal of Laser Applications, 2021, 33, 032019.
39 Xu X, Du J L, Luo K Y, et al. Surface and Coatings Technology, 2021, 422, 127500.
40 Wilms M B, Pirch N, Gökce B. Progress in Additive Manufacturing, 2023, 8, 159.
41 Li R, Yuan W, Yue H, et al. Optics & Laser Technology, 2022, 146, 107574.
42 Lou L Y, Zhang Y, Jia Y J, et al. Surface and Coatings Technology, 2020, 392, 125697.
43 Xu Q L, Zhang Y, Liu S H, et al. Surface and Coatings Technology, 2020, 398, 126093.
44 Zhang M, Gao P, Wang H. Conference Series, 2021, 1948, 012188.
45 Xu X, Lu H, Qiu J, et al. Journal of Manufacturing Processes, 2022, 75, 243.
46 Li L, Shen F, Zhou Y, et al. Journal of Laser Applications, 2019, 31, 042009.
47 Wu Z, Qian M, Brandt M, et al. JOM, 2020, 72, 4632.
48 Chen L, Zhang X, Wu Y, et al. Corrosion Science, 2022, 201, 110271.
49 Hu Z, Li Y, Lu B, et al. Optics & Laser Technology, 2022, 155, 108449.
50 Ren Y, Li L, Zhou Y, et al. Materials Letters, 2022, 315, 131962.
51 Bai Q, Li Q, Zhang J, et al. The International Journal of Advanced Manufacturing Technology, 2023, 125(7-8), 325.
52 Wang H, Zhang W, Peng Y, et al. Coatings, 2020, 10(3), 300.
53 Leung C L A, Marussi S, Atwood R C, et al. Nature Communications, 2018, 9, 1355.
54 Cui B, Liu S, Zhang F, et al. The International Journal of Advanced Manufacturing Technology, 2021, 119, 42.
55 Lou L Y, Li C X, Zhang Y, et al. Journal of Yanshan University, 2020, 44(2), 9(in Chinese).
娄丽艳, 李成新, 张煜, 等. 燕山大学学报, 2020, 44(2), 9.
56 Yin T Y, Zhang S, Wang Z Y, et al. Materials Chemistry and Physics, 2022, 28, 126191.
57 Schopphoven T, Gasser A, Wissenbach K, et al. Journal of Laser Applications, 2016, 28(2), 022501.
58 Liu H, Zhou Y. The International Journal of Advanced Manufacturing Technology, 2021, 112, 15.
59 Xu Z, Yuan J, Wu M, et al. Optics & Laser Technology, 2023, 158, 108850.
60 Song Y, Li X, Hu C, et al. Journal of Laser Applications, 2021, 33(3), 032019.
61 Xu S, Cai Q, Li G, et al. Optics & Laser Technology, 2022, 154, 108309.
62 Ding Y, Du C, Wang X, et al. Advanced Composites and Hybrid Materials, 2021, 4(1), 20.
63 Wang T, Dai S, Liao H, et al. Rapid Prototyping Journal, 2020, 26, 165.
64 Xu J, Rong Y, Huang Y, et al. Journal of Materials Processing Technology, 2018, 252, 72.
65 Wolff S J, Wang H, Gould B, et al. International Journal of Machine Tools and Manufacture, 2021, 166, 103743.
66 Hojjatzadeh S M H, Parab N D, Yan W, et al. Nature Communications, 2019, 10, 3088.
67 Lv F, Liang H, Xie D, et al. Journal of Alloys and Compounds, 2021, 85, 156866.
68 Tanigawa D, Funada Y, Abe N, et al. Optics & Laser Technology, 2018, 99, 32.
69 Song B, Hussain T, Voisey K T. Physics Procedia, 2016, 83, 70.
70 Li Z, Chai L, Tang Y, et al. Journal of Materials Research and Technology, 2023, 23, 204.
71 Li J, Zhu Z, Peng Y, et al. Optics & Laser Technology, 2022, 147, 107672.
72 Xiang K, Chai L, Zhang C, et al. Optics & Laser Technology, 2022, 145, 107518.
73 Liu X, Bi J, Meng Z, et al. Tribology International, 2021, 162, 107142.
74 Zhang Q, Han B, Li M, et al. Intermetallics, 2023, 153, 107795.
75 Hong S, Ma Q, Liu G, et al. Optics & Laser Technology, 2023, 157, 108678.
76 Zhang Z, Wang X, Zhang Q, et al. Optics & Laser Technology, 2019, 119, 105622.
77 Sun W, Huang X, Zhang J, et al. Friction, 2023.
78 Zhu Q, Liu Y, Zhang C. Materials Letters, 2022, 318, 132133.
79 Li Y, Shi Y. Optics & Laser Technology, 2021, 134, 106632.
80 Ding Y, Bi W, Zhong C, et al. Materials, 2022, 15(18), 6400.
[1] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[4] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[5] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[6] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[7] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[8] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[9] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[10] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[11] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[12] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[13] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[14] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[15] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed