Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010015-6    
  高分子与聚合物基复合材料 |
乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响
黄雨辰, 张永明
同济大学材料科学与工程学院, 先进土木工程材料教育部重点实验室,上海 201804
Effect of Emulsion Compound on Polymer Cement Waterproof Coating in Ceramic Tile Bonding System
HUANG Yuchen, ZHANG Yongming
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 9855KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用传统方法检测材料质量的聚合物水泥防水材料在其应用于瓷砖粘结体系中时常常发生开裂或掉砖的问题。因此采用新型的桥接裂缝能力以及拉伸粘结性能检测方法,可以在材料制备时有效预测其应用性能。通过宏观和微观方法重点研究了不同种类聚合物乳液复配对防水涂膜性能的影响,结果表明:苯丙乳液与醋酸乙烯-乙烯共聚乳液以1∶1的质量比复配可以提高涂膜的桥接裂缝能力,改善其抗基层开裂能力,有效避免渗漏水;同时,其拉伸粘结强度相对纯苯丙乳液提高了10.9%,抗瓷砖掉落能力也得到了提高。从整个体系来看,瓷砖粘结剂层和防水层是承担应力的主要部位,中心靠近瓷砖部位的位移和应力最大,并向四周递减。当加载外力时,中部最容易发生破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄雨辰
张永明
关键词:  聚合物水泥防水涂膜  瓷砖粘结体系  桥接裂缝能力  乳液复配    
Abstract: Cracking and brick loss often occur when polymer cement waterproof material tested by traditional methods is applied to ceramic tile bonding system.In this regard, the new testing methods of crack bridging ability and tensile adhesive strength can effectively predict the application performance of the material during preparation. The effects of different polymer emulsions on the performance of waterproof coatings were studied by macro and micro methods. The results showed that when the mass ratio of SA and VAE was 1∶1, it can improve the crack bridging ability of the coatings and effectively avoid water leakage. At the same time, the tensile adhesive strength of the emulsion is 10.9% higher than that of the pure styrene-acrylic emulsion. From the perspective of the whole system, the ceramic tile adhesive layer and the waterproof coating layer are the main parts that bear the stress. The displacement and stress near the ceramic tile are the largest and decrease to the surrounding. The middle section is most prone to failure when external forces are applied.
Key words:  polymer cement waterproof coating    ceramic tile bonding system    crack bridging ability    emulsion compound
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU577  
通讯作者:  zym126@tongji.edu.cn   
作者简介:  黄雨辰,2019年6月毕业于重庆大学,获得工学学士学位。现为同济大学材料科学与工程学院硕士研究生,在张永明老师的指导下进行研究。研究方向为建筑防水材料。
张永明,同济大学材料科学与工程学院副教授,硕士研究生导师。1991年本科毕业于同济大学材料学院无机非金属材料专业留校工作至今,从事干混砂浆的研发及应用研究。
引用本文:    
黄雨辰, 张永明. 乳液复配对瓷砖粘结体系中聚合物水泥防水涂膜的影响[J]. 材料导报, 2022, 36(Z1): 22010015-6.
HUANG Yuchen, ZHANG Yongming. Effect of Emulsion Compound on Polymer Cement Waterproof Coating in Ceramic Tile Bonding System. Materials Reports, 2022, 36(Z1): 22010015-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010015
1 沈春林.聚合物水泥防水涂料, 化学工业出版社, 2010, pp.5.
2 Yoshihiko O. Advanced Cement Based Mateirals, 1997, 5(2), 31.
3 Li F P, Liu L H, Liu K, et al. Construction and Building Materials, 2020, 239,117865.
4 董松. 聚合物水泥基防水涂料的制备及涂膜性能、显微结构的研究. 硕士学位论文, 重庆大学, 2002.
5 Ollitrault-Fichet R, Gauthier C, Clamen G, et al. Cement and Concrete Research, 1998, 28(12), 1687.
6 韩冬冬,陈维灯,钟世云.材料导报:综述篇, 2017, 31(12), 74.
7 Yacine B. Journal of Adhesion Science and Technology, 2017, 31(3), 219.
8 郑高锋.聚合物水泥防水涂料的研制. 硕士学位论文, 西北工业大学, 2006.
9 Yao W, Hu Q Q, Mu Y, et al. Advanced Materials Research, 2014, 3187, 936.
10 刘锡涛.新型建筑材料, 2019, 46(12), 120.
11 Zhao H, Li W, Zhang Y M. Advanced Materials Research, 2015, 3903, 217.
12 Marius W, Roger Z, Alfons B, et al. Cement and Concrete Composites, 2020, 107, 103494.
13 赵奇志, 陈艳军. 粘接, 2000(5), 9.
14 蹇守卫, 陈露, 马保国,等. 新型建筑材料, 2015, 42(7), 62.
15 孟博旭,许金余,顾超,等.硅酸盐通报, 2019, 38(6), 1713.
16 孙健,孟浩,韩培福,等.涂料工业, 2017, 47(3), 49.
17 Chang J, Xiong C, Zhang Y, et al. Construction and Building Materials, 2019, 209, 222.
18 Kong X Z, Zhu X L, Jiang X B, et al. Polymer, 2009, 50(17), 4220.
19 孔祥明,卢子臣,张朝阳.硅酸盐学报, 2017, 45(2), 274.
20 彭宇,赵国荣,王培铭,等.电子显微学报, 2016, 35(6), 490.
21 钟世云,王培铭.建筑材料学报, 2004(2), 168.
No related articles found!
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed