Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21110113-4    
  无机非金属及其复合材料 |
特种反应堆用亚化学计量UO2-x燃料O/U比调控与机理研究
吴学志, 尹邦跃
中国原子能科学研究院反应堆工程技术研究所,北京 102413
Study on Mechanism of Substoichiometric UO2-x Fuel for Special Nuclear Power Reactor
WU Xuezhi, YIN Bangyue
Reactor Engineering Technology Research Institute, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 3631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亚化学计量二氧化铀(UO2-x)是一种特殊的U-O系燃料,与传统的正化学计量二氧化铀(UO2)燃料相比,亚化学计量UO2-x燃料具有极低的高温氧势和高温挥发;因此,它成为某些服役温度较高、服役时间较长的特种核动力反应堆的候选燃料之一。本工作以亚化学计量二氧化铀(UO2-x)燃料制备工艺为主线,研究亚化学计量(O与U物质的量比小于2)的形成机理。主要包括:理论计算亚化学计量燃料O/U比、氧势(ΔGO2)及氧分压(PO2)的关系;探明添加金属铀和烧结时间等工艺参数对燃料O/U比和ΔGO2的影响规律。
亚化学计量UO2-x一种O/U比小于2的氧化物燃料,具有较低的高温氧势。本工作采用UO2+x掺杂金属铀,通过混料、压制和烧结的粉末冶金工艺制备亚化学计量UO2-x燃料,研究了亚化学计量UO2-x燃料O/U比的变化规律和机理。结果表明:亚化学计量UO2-x燃料O/U比随烧结氧势ΔGO2降低而减小,O/U比小于1.995的形成条件为ΔGO2小于-642.89 kJ/mol,在2 023 K普通氢气条件下烧结,无法制备得到亚化学计量UO2-x;金属铀通过参与还原反应和调控烧结ΔGO2两方面作用协同减小燃料的O/U比;燃料中加入金属铀发生液相烧结促进晶粒长大,亚化学计量UO1.974燃料晶粒尺寸为15~40 μm,而正化学计量UO2燃料晶粒尺寸为5~15 μm,大晶粒具有较低的裂变气体释放率;拉曼光谱显示,与常规UO2燃料相比,亚化学计量UO1.974燃料的光谱峰发生偏移,这是亚化学计量燃料的特征峰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴学志
尹邦跃
关键词:  亚化学计量二氧化铀  氧势  氧分压  氧铀比    
Abstract: Substoichiometric uranium dioxide (UO2-x) was a special U-O fuel, compared with traditional UO2 fuel, due to its extremely low high temperature oxygen potential and high temperature volatilization, substoichiometric UO2-x fuel had become one of the candidate fuels for some special nuclear power reactors with high service temperature and long service time.In this work, the main line is the preparation process of substoi-chiometric uranium dioxide fuel (UO2-x), study on the formation mechanism of substoichiometric (n(O)/n(U)<2) . It mainly includes: the O/U ratio, oxygen potential (ΔGO2) and oxygen partial pressure (PO2) of substoichiometric fuel are calculated; the effects of process parameters such as adding uranium and sintering time on the O/U ratio and ΔGO2 of fuel are investigated.
As an oxide fuel with O/U ratio < 2.0, substoichiometric UO2-x is low in high temperature oxygen potential. In this study, the substoichiometric UO2-x fuel was prepared by UO2+x doped with uranium through a metallurgical process of powder, including mixing, pressing and sintering, so as to explore the change law of substoichiometric UO2-x fuel O/U ratio as well as relevant mechanism.
The results showed that O/U ratio of substoichiometric UO2-x fuel decreased with sintering oxygen potential (ΔGO2), O/U ratio < 1.995 only when ΔGO2<-642.89 kJ/mol. The substoichiometric UO2-x cannot be prepared by sintering with ordinary hydrogen at 2 023 K. Uranium reduces the O/U ratio of the fuel synergistically through participating in the reduction reaction and regulating sintering ΔGO2. Uranium is added to the fuel for liquid phase sintering, thus promoting the grain growth. The grain size of substoichiometric UO1.974 fuel ranges from 15 μm to 40 μm, and of stoichiometric UO1.974 fuel from 5 μm to 15 μm. Large grains are low in fission gas release rate. Raman spectra have shown that compared with conventional UO2 fuel, substoichiometric UO1.974 fuel has shifted spectral peak, which is the characteristic peak of the substoichiometric fuel.
Key words:  substoichiometric uranium dioxide    oxygen potential    partial pressure of oxygen    oxygen to uranium ratio (n(O)/n(U) ratio)
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TL352.21  
通讯作者:  25871605@qq.com   
作者简介:  吴学志,中国原子能科学研究院副研究员。2006年9月至2016年8月,在中国原子能科学研究院获得核能科学与工程硕士学位和核燃料循环与材料专业工学博士学位,毕业后留院从事科研工作。研究工作包括压水堆、空间核动力以及快堆用先进核燃料与材料的基础理论和应用。
引用本文:    
吴学志, 尹邦跃. 特种反应堆用亚化学计量UO2-x燃料O/U比调控与机理研究[J]. 材料导报, 2022, 36(Z1): 21110113-4.
WU Xuezhi, YIN Bangyue. Study on Mechanism of Substoichiometric UO2-x Fuel for Special Nuclear Power Reactor. Materials Reports, 2022, 36(Z1): 21110113-4.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21110113
1 Fink J K. Journal of Nuclear Materials, 2000, 279,18.
2 Stehle H, Assmann H, Wunderlich F. Nuclear Engineering and Design, 1975, 33, 230.
3 Latta R E, Fryxell R E.Journal of Nuclear Materials, 1970, 35, 195.
4 Asamoto R R, Anselin F L, Conti A E. Journal of Nuclear Materials, 1969, 29, 67.
5 Jones W M, Gordon J, Long E A. The Journal of Chemical Physics, 1952, 20, 695.
6 Manara D, Ronchi C, Sheindlin M. Journal of Nuclear Materials, 2005, 342, 148.
7 Blackburn P E.Journal of Nuclear Materials, 1973, 46, 244.
8 Kapshukov I I, Lyalyushkin N V. Journal of Radioanalytical and Nuclear Chemistry, 1990, 143, 213.
9 Harding J H, Martin D G. Journal of Nuclear Materials, 1989, 166, 223.
10 Anderson J S, Sawyer J O, Worner H W. Nature, 1960, 185,915.
11 Rothwell E. Journal of Nuclear Materials, 1962, 6,229.
[1] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[2] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed