Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 460-464    
  金属与金属基复合材料 |
酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究
李崇智, 孙浩, 叶国林, 张艺劼
北京建筑大学土木与交通工程学院,北京102600
Study on the Effect of Acidified Pseudo-boehmite Modified Nickel Steel Slag Composite Dopant
LI Chongzhi, SUN Hao, YE Guolin, ZHANG Yijie
School of Civil and Transportation Engineering, Beijing University of Civil and Architecture, Beijing 102600, China
下载:  全 文 ( PDF ) ( 2597KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高镍钢渣的活性,本工作在镍钢渣胶凝材料中加入经盐酸酸化后的拟薄水铝石(酸化拟薄水铝石)0%~8%,得到一系列不同酸化拟薄水铝石含量的改性镍钢渣复合掺合料(改性NSSCA)。探究不同掺量的酸化拟薄水铝石对改性NSSCA-水泥的流动度、凝结时间、力学性能和体积稳定性的影响。结果表明:由于酸化拟薄水铝石具有较好的胶溶性和粘结性,会导致改性NSSCA-水泥净浆流动度降低,凝结时间缩短;还会显著激发改性NSSCA的力学性能,使胶砂抗折强度、抗压强度均有所提高,其中掺6%酸化拟薄水铝石时,NSSCA试件的28 d抗折强度和抗压强度分别比对照组提升了20.1%、30.3%;酸化拟薄水铝石能促进改性NSSCA-水泥水化生成过量的AFt,与改性NSSCA中的f-CaO、RO相共同作用使试件产生微膨胀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李崇智
孙浩
叶国林
张艺劼
关键词:  酸化  拟薄水铝石  镍钢渣  复合掺合料  力学性能  体积稳定性    
Abstract: To improve the activity of nickel steel slag, a series of modified nickel steel slag composite admixtures (Modified NSSCA) with different acidified pseudo-boehmite content were obtained by adding 0%-8% of pseudo-boehmite (acidified pseudo-boehmite) to the nickel steel slag cementitious material after acidification with hydrochloric acid. The effects of different amounts of acidified pseudo-boehmite on the flow, setting time, mechanical properties and volumetric stability of modified NSSCA-cement were investigated. The results showed that the acidified pseudo-boehmite has better gelling and bonding properties, which will lead to the reduction of the flow rate and setting time of the modified NSSCA-cement net slurry; it will also significantly stimulate the mechanical properties of the modified NSSCA, which will increase the flexural strength and compressive strength of the cement sand. The 28 d flexural strength and compressive strength of NSSCA specimens were improved by 20.1% and 30.3%, respectively, compared with the control group; acidified pseudo-boehmite could promote the hydration of modified NSSCA-cement to generate excess AFt, which together with f-CaO and RO phase in modified NSSCA caused micro-expansion of specimens.
Key words:  acidification    pseudo-boehmite    nickel steel slag    composite dopant    mechanical properties    volumetric stability
                    发布日期:  2021-12-09
ZTFLH:  TU521  
基金资助: 北京自然科学基金(51508020)
通讯作者:  lichongzhi@bucea.edu.cn   
作者简介:  李崇智,北京建筑大学教授, 2004年清华大学土木工程专业博士毕业,主要从事混凝土外加剂和矿物掺合料的研制与应用研究。
引用本文:    
李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
LI Chongzhi, SUN Hao, YE Guolin, ZHANG Yijie. Study on the Effect of Acidified Pseudo-boehmite Modified Nickel Steel Slag Composite Dopant. Materials Reports, 2021, 35(z2): 460-464.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/460
1 吴中伟.水泥工程,2000(2),1.
2 Choi Y C,Choi S. Constr Build Mater,2015,99,279.
3 Huang Y,Wang Q,Shi M.Constr Build Mater,2017,156,773.
4 Katsiotis N S,Tsakiridis P E,Velissariou D,et al.Waste Biomass Valorization,2015,6,177.
5 Palod R, Deo S V, Ramtekkar G D. American Society of Civil Engineers, 2018, 445.
6 何娟,程从密,李烈军.混凝土,2011(7),77.
7 Liu, S H, Li H L. Journal of Thermal Analysis and Calorimetry, 2014,117(2),629.
8 霍彬彬,李保亮,陈春,等.硅酸盐学报,2020,0454.
9 Sun J, Zhang Z, Zhuang S, et al.Construction and Building Materials, 2020, 241, 118141.
10 Guo X, Shi H.Materials and Structures, 2013, 46(8), 1265.
11 杨柳,胡海强,任靖,等.应用化工,2021,50(5),1311.
12 胡涛,张君屹.石化技术与应用,2018,36(1),69.
13 李凯涛.原子经济反应制备水滑石的机理、结构调控与性质研究.博士学位论文,北京化工大学,2019.
14 王强,黎梦圆,石梦晓.硅酸盐学报,2014,42(5),629.
15 朱丽娜.改性海藻酸复合凝胶固定化纤维素酶的研究.硕士学位论文,哈尔滨理工大学,2014.
16 Motz H, Geiseler J. Waste Management, 2001, 21(3), 285.
17 Du J, Liu J X. Fresenius Environmental Bulletin, 2014, 22(11), 3279.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[10] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[11] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[12] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[13] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[14] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[15] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed