Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 213-217    
  无机非金属及其复合材料 |
混凝土中气泡的产生与发展:机理和影响因素
罗祥, 王玲, 王振地
中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
Mechanism and Influencing Factors of Bubble Generation and Evolution in Concrete
LUO Xiang, WANG Ling, WANG Zhendi
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
下载:  全 文 ( PDF ) ( 2304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 搅拌和引气剂作用引入混凝土中的气泡可增加新拌混凝土的工作性,提升硬化混凝土抗冻耐久性且不显著影响混凝土强度。在混凝土搅拌、运输、浇筑、振捣和养护过程中,气泡处于动态变化,直至混凝土硬化后成为孔隙结构的一部分。新拌混凝土作为流体,其中的气泡行为一定程度上和水溶液中气泡行为类似,区别在于混凝土是固液气三相混合体系和水泥水化过程的影响。近年来研究者们开展了大量环境因素、混凝土组成和施工工艺影响气泡行为的实验和理论研究工作,探究了砂浆和混凝土中气泡液膜吸附固体颗粒形成固体外壳的特性及水泥水化过程对气泡产生与发展的影响。本文归纳了气泡产生、生长、稳定与失稳破裂四个阶段的机理研究进展,介绍了环境温度、环境气压、组成和施工工艺四个因素对气泡的影响,分析了混凝土气泡研究在实验方法和理论模型方面面临的问题并展望其前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗祥
王玲
王振地
关键词:  气泡  孔隙  气泡产生  稳定性  引气剂  温度    
Abstract: An improvement in the working performance of fresh concrete and the durability of hardened concrete can be achieved by air-filled voids introduced by stirring process and air-entraining agents, which will not significantly decline the strength of hardened concrete. In the process of concrete mixing, transportation, pouring, vibration and curing, bubbles in fresh concrete are constantly changing until concrete hardens and some bubbles become a part of the pore structure. The behavior of bubbles in fresh concrete resembles the one in aqueous solution. However, the multiphase (including gas, liquid and solid) and cement hydration process are distinctions between concrete and aqueous solution. This urges intensive research endeavors to figure out the properties of air-void shells in fresh cement paste and how cement hydration process influences bubble generation and evolution. And in recent years, impressive strides have been made in understanding the influence of environmental factors, concrete composition and construction process on bubble stability in fresh concrete. This review offers a retrospection of the research efforts with respect to the mechanism of generation, growth, stability, and instability of bubbles, and provides elaborate descriptions about the influence of temperature, atmospheric pressure, concrete composition and construction technology on bubbles. We then pay attention to the problems confronting the experimental method and theoretical model and discuss further research on concrete bubbles.
Key words:  bubble    air void    bubble generation    stability    air-entraining agent    temperature
                    发布日期:  2021-12-09
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2017YFB0309903)
通讯作者:  wangling@cbmamail.com.cn   
作者简介:  罗祥,2019年7月毕业于清华大学土木工程系,获得工学学士学位。现为中国建筑材料科学研究总院硕士研究生,在王玲教授的指导下进行研究。目前主要研究领域为混凝土耐久性。
王玲,教授级高工,中国建材联合会混凝土外加剂分会秘书长,中国土木学会混凝土耐久性专业委员会副主任委员,全国混凝土标准化技术委员会副秘书长。自1993年起,从事混凝土外加剂和混凝土耐久性的研究与技术开发工作。完成10余项国家科技攻关、自然科学基金和973基础研究项目,在混凝土碱-骨料反应、高强高性能混凝土收缩开裂、混凝土外加剂、原材料对混凝土体积变化和裂缝形成的影响机理及控制技术、高性能道路水泥混凝土路面关键技术、无砟轨道结构混凝土材料、多因素协同作用下钢筋混凝土耐久性等方面取得了大量研究成果。发表论文70多篇,专著3本;获得授权专利近30项;主编和参编了10余项混凝土及外加剂标准。2006年荣获中国硅酸盐学会第六届青年科技奖,2013年荣获首届吴中伟青年科技奖。获省部级科技奖励7项。
引用本文:    
罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
LUO Xiang, WANG Ling, WANG Zhendi. Mechanism and Influencing Factors of Bubble Generation and Evolution in Concrete. Materials Reports, 2021, 35(z2): 213-217.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/213
1 李扬, 王振地, 王玲. 混凝土, 2019 (8), 144.
2 Shi Y, Yang H, Zhou S, et al.Advances in Materials Science and Engineering, 2018, 2018, 1.
3 Drenckhan W, Saint-Jalmes A.Advances in Colloid and Interface Science, 2015, 222, 228.
4 Zeng X H, Lan X L, Zhu H S, et al.Materials, 2020, 13(8), 1820.
5 Mielenz R C, Wolkodoff V E, Backstrom J E, et al.Journal Proceedings, 1958, 55(7), 95.
6 Huo J, Wang Z, Chen H, et al.Materials, 2019, 12(9), 1384.
7 Mehta P K, Monteiro P J M.Concrete: microstructure, properties and materials, The McGraw-Hill Companies, The United States, 2006,pp. 284.
8 Du L, Folliard K J.Cement and Concrete Research, 2005, 35(8), 1463.
9 Blander M, Katz J.Advances in Colloid and Interface Science, 1979, 10(1), 1.
10 国明成, 彭玉成, 吴晓丹, 等. 塑料工业, 2004, 32(7), 20.
11 Amon M, Denson C.Polymer Engineering & Science, 1984, 24(13), 1026.
12 Moradian M, Hu Q, Aboustait M, et al. Materials & Design, 2017, 136, 137.
13 Battino R, Rettich T R, Tominaga T.Journal of Physical and Chemical Reference Data, 1983, 12(2), 163.
14 Corr D J, Lebourgeois J, Monteiro P J M, et al.Cement and Concrete Research,2002,32(7), 1025.
15 丁蓓, 刘加平, 刘建忠.混凝土, 2006(11), 34.
16 Wang J, Nguyen A V, Farrokhpay S, et al.Advances in Colloid and Interface Science, 2016, 228, 55.
17 Naire S, Braun R J, Snow S A.Journal of Colloid and Interface Science, 2000, 230(1), 91.
18 Ley M T, Chancey R T, Juenger M C, et al.Cement and Concrete Research, 2009, 39(5), 417.
19 Petit P, Javierre I, Jézéquel P H, et al.Cement and Concrete Research,2014,60, 37.
20 张春荣. 泡沫复合驱模拟体系界面扩张粘弹与泡沫性质研究.博士学位论文,中国科学院研究生院(理化技术研究所), 2007.
21 Marrucci G, Nicodemo L. Chemical Engineering Science, 1967, 22(9), 1257.
22 Myers D.Surfaces, interfaces, and colloids: principles and applications, 2nd ed, John Wiley & Sons, The United States, 2013.
23 Rosen M J.Surfactants and interfacial phenomena, 3rd ed, John Wiley & Sons, The United States, 2004,pp. 282.
24 Saucier F, Pigeon M, Cameron G.Materials Journal, 1991, 88(1), 25.
25 王稷良, 廖华涛, 吴方政, 等. 公路交通科技, 2015, 32(1), 25.
26 邓强, 严娇, 白云, 等. 中外能源, 2017, 22(7), 46.
27 任崴峣, 柯国炬, 何晓雁, 等. 硅酸盐通报, 2015, 34(2), 331.
28 王庆石, 张凯, 王起才, 等.硅酸盐通报, 2015, 34(8), 2095.
29 林梦凯, 王起才, 李海莲, 等.混凝土, 2015(12), 4.
30 李雪峰, 付智. 硅酸盐学报, 2015, 43(8), 1076.
31 Li Y, Wang Z D, Wang L. Revista Romana de Materiale-Romanian Journal of Materials, 2019, 49 (1), 88.
32 严继民, 胡日恒. 化学学报, 1964, 30(1), 1.
33 王明武. 高原低压低氧对水成膜泡沬灭火剂的性能影响研究.硕士学位论文, 中国民用航空飞行学院, 2015.
34 Li Y, Wang Z D, Wang L.Journal of Wuhan University of Technology (Materials Science), 2019, 34(6), 1365.
35 同昆朋, 朱洪波. 新型建筑材料, 2017, 44(6), 97.
36 冉千平, 游有鲲, 丁蓓. 新型建筑材料, 2003(6), 33.
37 何燕, 张雄, 洪万领, 等. 建筑材料学报, 2019, 22(2), 222.
38 牟廷敏, 冯中军, 丁庆军, 等. 混凝土, 2014(8), 140.
39 单广程,乔敏, 高南箫, 等. 新型建筑材料, 2019, 46(8), 73.
40 Shan G, Zhao S, Qiao M, et al.Construction and Building Materials, 2020, 237, 117625.
41 Lazniewska-Piekarczyk B.Construction and Building Materials, 2013, 41, 374.
42 王春明.港工技术, 2015, 52(6), 77.
43 Wang Y, Liang H C, Zhao B C, et al. Key Engineering Materials, 2017, 4348, 537.
44 Puthipad N, Ouchi M, Attachaiyawuth A, et al.Construction and Buil-ding Materials, 2018, 180, 437.
45 Sporel F, Uebachs S, Brameshuber W, et al.Materials and Structures, 2009, 42(2), 227.
46 刘家海, 于定勇, 李中会. 中国海洋大学学报(自然科学版), 2016, 46(8), 104.
47 Kenneth C H, Roger J P.Transportation Research Record,1996,1532(1), 1.
48 Han D, Lee G, Yoon S, et al.Construction and Building Materials, 2015, 76, 10.
49 Zheng X H, Ge Y, Yuan J, et al.Advanced Materials Research, 2014, 2885, 110.
[1] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[2] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[3] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[4] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[5] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[6] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[7] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[8] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[9] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[10] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[11] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[12] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[13] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[14] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[15] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed