Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 84-87    
  无机非金属及其复合材料 |
氢等离子体辅助制备Ru/UiO-66催化材料及其应用
张秀玲, 赵静, 徐卫卫, 李艳琴
大连大学物理科学与技术学院,大连 116622
Preparation and Application of Ru/UiO-66 with Assistant of Atmospheric Pressure Hydrogen Plasma
ZHANG Xiuling, ZHAO Jing, XU Weiwei, LI Yanqin
College of Physical Science and Technology, Dalian University, Dalian 116622, China
下载:  全 文 ( PDF ) ( 6002KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 大气压氢等离子体在负载型贵金属催化材料的制备中有重要的应用,本实验采用大气压氢等离子体技术制备了Ru/UiO-66催化材料,研究了大气压氢等离子体技术和传统的氢热还原技术所制备的Ru/UiO-66催化材料在结构和性能上的特点。X射线衍射、扫描电镜、N2吸附脱附、X光电子能谱和透射电镜分析结果表明:大气压氢等离子体与传统的氢热还原法均能很好地保持多孔材料UiO-66的晶相结构、形貌、比表面积和孔结构,并将氧化态Ru还原成单质态Ru。与氢热还原法相比,大气压氢等离子体制备的Ru/UiO-66样品中Ru粒径更小。等离子体与Ru/UiO-66共同作用CO2甲烷化反应结果表明:两种方法制备的Ru/UiO-66具有相似的催化活性,CO2转化率可达70%以上,CH4选择性高于90%。这说明大气压氢等离子体还原技术可以代替传统的氢热还原制备负载型Ru/UiO-66催化材料,省去后者长时间的程序升温和降温过程,有效缩短催化材料的制备周期。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张秀玲
赵静
徐卫卫
李艳琴
关键词:  Ru/UiO-66  大气压氢等离子体  热还原  CO2甲烷化    
Abstract: Atmospheric hydrogen plasma (AHP) has been generally used in the preparation of supported noble metal catalytic materials. In this paper, Ru/UiO-66 catalyst was prepared by atmospheric pressure hydrogen plasma, and compared the structural and performance characteristics with the sample prepared by the traditional hydrogen thermal reduction method. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM) showed that both atmospheric pressure hydrogen plasma method and traditional hydrogen thermal reduction method can maintain the crystal structure, morphology, specific surface area and pore structure of porous material UiO-66. The particle size of Ru in the sample prepared by the hydrogen plasma system is smaller than that of thermal reduction method. It is noteworthy that the Ru/UiO-66 prepared by the two methods has similar catalytic activity, and the CO2 conversion can reach more than 70% under the plasma assisted in the CO2 methanation reaction, and the CH4 selectivity is more than 90%. It indicates that atmospheric pressure hydrogen plasma reduction technology can replace traditional thermal reduction to prepare the supported Ru/UiO-66 catalytic material with ultrafine metal particles. It can also save the long and tedious time of heating and cooling, and short the period of material treatment effectively.
Key words:  Ru/UiO-66    atmospheric hydrogen plasma    thermal reduction    CO2 methanation
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB33  
基金资助: 国家自然科学基金(21673026;11605020);大连市张秀玲劳模创新工作室;大连大学研究生教育教学改革基金
通讯作者:  xiulz@sina.com   
作者简介:  张秀玲,大连大学物理科学与技术学院教授。1998年获大连理工大学应用化学硕士学位,2002年获大连理工大学应用化学博士学位。主要研究方向为等离子体转化温室气体、气液放电、离子液体、MOF以及大气压冷等离子体增强制备功能纳米材料。2007年入选辽宁省“百千万人才工程”百人层次,2012年被评为辽宁省优秀教师。李艳琴,大连大学物理科学与技术学院副教授。2006年获大连理工大学等离子体物理硕士学位,2014年获大连理工大学等离子体物理博士学位。主要研究方向为等离子体气液放电及制备磁性液体。
引用本文:    
张秀玲, 赵静, 徐卫卫, 李艳琴. 氢等离子体辅助制备Ru/UiO-66催化材料及其应用[J]. 材料导报, 2020, 34(Z2): 84-87.
ZHANG Xiuling, ZHAO Jing, XU Weiwei, LI Yanqin. Preparation and Application of Ru/UiO-66 with Assistant of Atmospheric Pressure Hydrogen Plasma. Materials Reports, 2020, 34(Z2): 84-87.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/84
1 Ray D, Saha R, Subrahmanyam C, et al. Catalysts, 2017, 7(9), 244.
2 Di L B, Li Z, Park D W, et al. Japanese Journal of Applied Physics, 2017, 56(6), 060301.
3 Zhang X L, Xu W W, Duan D Z, et al. IEEE Transactions on Plasma Science, 2018, 46(8), 2776.
4 Li Z, Zhang X L, Zhang Y Z, et al. Plasma Science and Technology, 2018, 20(1), 108.
5 Kumar R, Jayaramulu K, Maji T K, et al. Dalton Transactions, 2014, 43(20),7383.
6 Qasem N A A, Ben-Mansour R, Habib M A, et al. Applied Energy, 2018, 210, 317.
7 Chakraborty A, Achari A, Eswaramoorthy M, et al. Chemical Communications, 2016, 52, 11378.
8 Zhang S, Li L, Zhao S, et al. Inorganic Chemistry, 2015, 54, 8375.
9 Motegi H, Yano K, Setoyama N, et al. Journal of Porous Materials, 2017, 24(5), 1327.
10 Rungtaweevoranit B, Baek J, Araujo J R, et al.Nano Letters, 2016, 16(12), 7645.
11 Xu W W, Zhang X L, Dong M Y, et al. Plasma Science & Technology, 2019, 21(4), 27.
[1] 欧先国, 周玉山, 毛文峰, 顾晓瑜, 长世勇, 裴锋. 多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响[J]. 材料导报, 2019, 33(Z2): 38-42.
[2] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[3] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[4] 张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
[5] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[6] 王 斌,张乐乐,杜金晶,张 博,梁李斯,朱 军. 电热还原法制备V-Ti-Cr-Fe储氢合金[J]. 《材料导报》期刊社, 2018, 32(10): 1635-1638.
[7] 谭操, 段红娟, 王军凯, 张海军, 刘江昊. 熔盐镁热还原法合成ZrB2超细粉体*[J]. 《材料导报》期刊社, 2017, 31(8): 109-112.
[8] 尹月, 马北越, 张博文, 李世明, 于景坤, 张战, 李光强. 添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 111-114.
[9] 张 薇,肖国庆,丁冬海. 硼砂对自蔓延高温合成ZrB2粉体的影响[J]. 《材料导报》期刊社, 2017, 31(24): 125-128.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed