Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 308-314    
  无机非金属及其复合材料 |
基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究
刘盼1,2,3, 肖学英1,2, 常成功1,2, 阿旦春1,2,3, 李颖1,2, 董金美1,2, 郑卫新1,2, 黄青1,2,3, 董飞1,2,3, 刘秀泉1,2,3, 文静1,2
1 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效重点实验室,西宁810008
2 青海省盐湖资源化学重点实验室,西宁810008
3 中国科学院大学,北京100049
Study on the Technology of Preparing Magnesium Oxychloride Cement Material by Calcination Extraction of Lithium By-Product Based on Orthogonal Experiment and Response Surface Method
LIU Pan1,2,3, XIAO Xueying1,2, CHANG Chenggong1,2, A Danchun1,2,3, LI Ying1,2, DONG Jinmei1,2, ZHENG Weixin1,2, HUANG Qing1,2,3, DONG Fei1,2,3, LIU Xiuquan1,2,3, WEN Jing1,2
1 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xining 810008, China
2 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China
3 University of Chinese Academy of Science, Beijing 100049, China
下载:  全 文 ( PDF ) ( 6233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了拓展氯氧镁水泥材料(MOC)用活性氧化镁的来源途径,采用正交试验和响应面分析法研究了煅烧法提锂副产物制备氯氧镁水泥材料的最佳工艺条件。以抗压强度为评价指标,采用三因素四水平正交试验研究了副产物煅烧温度、MgO与MgCl2的物质的量比以及MgCl2溶液的波美度对不同龄期氯氧镁水泥材料抗压强度的影响规律。显著性分析结果表明:煅烧温度和MgCl2溶液波美度是影响氯氧镁水泥材料不同龄期抗压强度的重要因素,而MgO与MgCl2的物质的量比对氯氧镁水泥材料不同龄期抗压强度的影响不明显。以28 d抗压强度为评价指标,制备氯氧镁水泥材料的最佳工艺条件为:煅烧温度800 ℃、MgO与MgCl2的物质的量比8.7、MgCl2溶液的波美度28。进一步采用响应面分析法和验证试验佐证了正交试验结果的准确性,响应面预测模型对优化材料制备工艺以及预测材料力学性能具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘盼
肖学英
常成功
阿旦春
李颖
董金美
郑卫新
黄青
董飞
刘秀泉
文静
关键词:  煅烧法提锂  氯氧镁水泥  抗压强度  正交试验  响应面    
Abstract: In order to expand the source of active magnesium oxide for magnesium oxychloride cement materials, the optimum technological conditions for the preparation of magnesium oxychloride cement from the by-product of lithium extraction by calcination were studied by orthogonal test and response surface analysis. The effects of calcination temperature, molar ratio between MgO and MgCl2, and the baume degree of MgCl2 solution on the compressive strength of magnesium oxychloride cement at different ages were studied by using the three-factor and four-level ortho-gonal test, with the compressive strength as the evaluation index. The significance analysis results show that the calcination temperature and the baume degree of MgCl2 solution are important factors that affect the compressive strength of magnesium oxychloride cement materials at different ages, while the molar ratio between MgO and MgCl2 had no obvious effect on the compressive strength of magnesium oxychloride cement at different ages. Taking the 28 d compressive strength as an evaluation index, the best technological conditions for the preparation of magnesium oxychloride cement materials were as follows: calcination temperature 800 ℃, molar ratio 8.7 between MgO and MgCl2, baume degree of MgCl2 solution 28. The accuracy of the orthogonal test results is proved by response surface analysis and verification test. The response surface prediction model has certain guiding significance for optimizing the material preparation process and predicting the mechanical properties of materials.
Key words:  lithium extraction by calcination    magnesium oxychloride cement    compressive strength    orthogonal test    response surface
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU528  
基金资助: 基金项目:青海省重点研发与转化计划(2019-GX-165);中国科学院青年创新促进会(2018467;2019423)
通讯作者:  wj580420@isl.ac.cn   
作者简介:  刘盼,中国科学院大学硕士研究生。主要从事盐湖镁资源综合利用以及镁质胶凝材料耐久性研究。文静,中国科学院青海盐湖研究所,副研究员,硕士研究生导师。2013年毕业于中国科学院青海盐湖研究所无机化学专业,获理学博士学位。同年留所工作,主要从事盐湖镁资源综合利用、镁质材料基础理论以及混凝土耐久性等研究工作。共计发表SCI和EI等论文20余篇,申报发明专利50余项,授权17项。
引用本文:    
刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
LIU Pan, XIAO Xueying, CHANG Chenggong, A Danchun, LI Ying, DONG Jinmei, ZHENG Weixin, HUANG Qing, DONG Fei, LIU Xiuquan, WEN Jing. Study on the Technology of Preparing Magnesium Oxychloride Cement Material by Calcination Extraction of Lithium By-Product Based on Orthogonal Experiment and Response Surface Method. Materials Reports, 2020, 34(Z2): 308-314.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/308
1 Sorrel S. Comptes Rendus-Academiedes dessciences, 1867, 65(1), 2.
2 马慧, 关博文, 王永维, 等.材料导报:综述篇, 2015(8),107.
3 Beaudoin JJ, Ramachandran VS.Cement and Concrete Research, 1975, 5(6), 617.
4 Qin L, Huang Z, Zhang L, et al. Journal of Wuhan University of Techno-logy-Materials Science Edition, 2009, 24(1), 127.
5 Xu B, Ma H, Hu C, et al.Materials Structures, 2016, 49(4), 1319.
6 Yun S J.Materials Letters, 2001, 50(1), 28.
7 Sglavo V M, Genua F D, Conci A, et al. Journal of Materials Science, 2011, 46(20), 6726.
8 吴中伟.建筑材料学报, 1998, 1(1), 1.
9 程颐, 成时亮.建筑节能, 2012, 40(1), 59.
10 Matkovic B, Young J F.Nature Physical Science, 1973, 246(153), 79.
11 Bilinski H, Matrovic B, Mazuranic C, et al.Journal of the American Ceramic Society, 1984, 67(4), 266.
12 Deng D H, Zhang C M.Cement and Concrete Research, 1999, 29(9), 1365.
13 余红发.氯氧镁水泥及其应用, 中国建材工业出版社, 1993.
14 张振禹, 戴长禄, 张铨昌, 等.中国科学: 化学生命科学地学, 1991 (1), 82.
15 Lipunov I N, Kovel M S, Teploukhov A S, et al.Russian Journal of Applied Chemistry, 2004, 77(4), 543.
16 文静, 余红发, 吴成友, 等. 硅酸盐学报, 2013, 41(5),588.
17 Li Y, Li Z J, He P P, et al.Construction and Building Materials, 2016, 102, 233.
18 东方明.国土资源, 2010(9),31.
19 杨光. 氢氧化镁分解特性的研究.硕士学位论文, 东北大学, 2009.
20 白云山. 白云石、菱镁矿生产高纯度碳酸镁和氧化镁新工艺研究.硕士学位论文, 陕西师范大学, 2005.
21 张伟党, 钱海燕, 孔庆刚.非金属矿, 2007, 30(5), 9.
22 葛绍进, 张旭, 王红宁, 等. 硅酸盐学报, 2019(7),865.
23 姚吉升, 卢德清, 吴汝范, 等. 轻金属, 1982(8),41.
24 Somarathna Y R, Mantilaka M M G P G, Karunaratne D G G P, et al. Crystal Research and Technology, 2016, 51(3), 207.
25 陈宁. 盐湖卤水碳化沉锂过程研究及工艺优化.硕士学位论文, 中国科学院大学, 2017.
26 彭浩. 水氯镁石制备活性氧化镁和氯氧镁水泥研究.硕士学位论文, 华东理工大学, 2011.
27 Tan Y S, Yu H F, Li Y, et al.Ceramics International, 2014, 40(8), 13543.
28 Wu C Y, Chen C, Zhang H F, et al.Construction and Building Mate-rials, 2018, 172,597.
[1] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[2] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[3] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[4] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[5] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[6] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[7] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[8] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[9] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[10] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[11] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[12] 侯永强, 尹升华, 曹永, 戴超群. 基于RSM-BBD的混合骨料胶结充填体强度增长规律分析[J]. 材料导报, 2020, 34(14): 14063-14069.
[13] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[14] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[15] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed