Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 299-303    
  无机非金属及其复合材料 |
碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究
卞立波, 董申, 陶志
北京建筑大学土木与交通工程学院,北京100044
Basic Properties of Alkali Activated Slag/Fly Ash Pervious Concrete
BIAN Libo, DONG Shen, TAO Zhi
School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 4334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用氢氧化钠及水玻璃作为碱激发剂来激发矿粉/粉煤灰,制备以矿粉/粉煤灰为胶材的多孔混凝土。对比不同碱当量、激发剂模数、设计空隙率对多孔混凝土一定龄期下的力学性能、透水性能的影响。研究结果表明,随着碱激发剂模数、碱当量的增加,各龄期抗压强度和抗折强度均呈现先增加后降低的趋势。且设计空隙率25%,模数为1.5,碱当量为6.0%,抗压强度达到最大值23.4 MPa,抗折强度为3.1 MPa,碱激发矿渣/粉煤灰多孔混凝土与浆体力学性能有显著的相关性;多孔混凝土总体透水系数10 mm/s(设计空隙率25%)以上,设计空隙率为15%,试件抗压强度可达28.3 MPa,透水系数达4.3 mm/s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卞立波
董申
陶志
关键词:  多孔混凝土  抗压强度  空隙率  透水系数    
Abstract: Pervious concrete with slag/fly ash as rubber material was prepared by using sodium hydroxide and sodium silicate as alkali activator. The effects of different alkali equivalent, activator modulus and designed porosity on the mechanical properties and water permeability of per-vious concrete at a certain age were compared. The results showed that the compressive strength and flexural strength increased at first and then decreased with the increase of alkali activator modulus and alkali equivalent. The designed porosity is 25%, modulus is 1.5, alkali equivalent is 6.0%, compressive strength is 23.4 MPa, flexural strength is 3.1 MPa, alkali-activated slag/fly ash pervious concrete has significant correlation with mechanical properties of slurry. The overall permeability of pervious concrete is 10 mm/s, the designed porosity is more than 25%, the designed porosity is 15%, the compressive strength is 28.3 MPa, the permeability is 4.3 mm/s.
Key words:  pervious concrete    compressive strength    porosity    permeability
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU528  
基金资助: 北京市教委科研计划一般项目(KM201710016016);北京建筑大学市属高校基本业务费专项资金-QN青年科研创新专项(X18260)
通讯作者:  bianlibo@bucea.edu.cn   
作者简介:  卞立波,2016年6月毕业于北京科技大学,获得工学博士学位。现为北京建筑大学副教授,讲授《建筑材料测试技术》《土木工程材料》及《无机非金属材料工程》专业课程中的试验课程。主持北京市自然基金,北京市教委项目,科技部重点研发技术,企业委托项目多项。主要研究领域多元复合新型胶凝材料技术,多孔质混凝土混凝土技术和特种及新型建材。授权/申请发明专利16项,实用新型7项,发表相关论文20余篇。
引用本文:    
卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
BIAN Libo, DONG Shen, TAO Zhi. Basic Properties of Alkali Activated Slag/Fly Ash Pervious Concrete. Materials Reports, 2020, 34(Z2): 299-303.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/299
1 Golden J S,Kaloush K E. International Journal of Pavement Engineering,2006,7(1),37.
2 Yanagibashi K, Yonezawa T. In:CANMET/ACI/JCI International Conference on Recent Advances in Concrete Technology,Tokushima(JP),1998,pp. 141.
3 Sofi M,Deventer J S J V,Mendis P A,et al.Cement & Concrete Research,2007,37(2),251.
4 Rashad A M, Zeedan S R, Hassan A A.Construction & Building Mate-rials,2016,102(2),811.
5 Xu H,Shen L F,Wang W,et al. Journal of Hazardous Materials,2010,175,198.
6 Bakharev T.Cement & Concrete Research,2005,35(4),658.
7 Bakharev T.Cement & Concrete Research,2005,35(6),1233.
8 Sun Zengqing, Lin Xiaochen, Vollpracht Anya. Construction and Buil-ding Materials,2018 189,797.
9 徐庆,李秋, 陈伟, 等. 硅酸盐通报, 2018,37(11), 3575.
10 丁崧,陈潇,夏飞跃,等. 建筑材料学报, 2020,23(1),48.
11 Deo O,Neithalath N. Construction and Building Mate-rials,2011,25(11),4181.
12 何娟,杨长辉. 土木建筑与环境工程, 2011,33(3), 148.
13 黄科,马玉玮,郭奕群,等. 硅酸盐通报, 2015,34(10), 2770.
14 Nadoushan M J,Ramezanianpour A A.Construction and Building Mate-rials,2016,111,337.
15 Hardjito D,Wallah S E,Sumajouw D M.Civil Engineering Dimension,2004,6(2),88.
16 Görhan G,Kürklü G. Composites Part B:Engineering,2014,58,371.
17 Morsy M,Alsayed S,Al-Salloum Y,et al. Arabian Journal for Science and Engineering,2014,39(6),4333.
[1] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[2] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[3] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[4] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[5] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[6] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[7] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[8] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[9] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[10] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[11] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[12] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[13] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[14] 曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹. 地聚物基透水混凝土的制备与性能[J]. 材料导报, 2019, 33(24): 4086-4091.
[15] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed