Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 499-504    
  高分子与聚合物基复合材料 |
无机纳米粒子协同无卤阻燃聚丙烯的研究进展
罗继永1,2, 张道海1,2, 田琴1,2, 魏柯1,2, 周密1,2, 杨胜都1
1 贵州大学材料与冶金学院,贵阳 550025
2 国家复合改性聚合物材料工程技术中心,贵阳 550014
Research Progress of Inorganic Nanoparticles Synergistic Halogen-free Flame Retardant Polypropylene
LUO Jiyong1,2, ZHANG Daohai1,2, TIAN Qin1,2, WEI Ke1,2, ZHOU Mi1,2, YANG Shengdu1
1 College of Material and Metallurgy , Guizhou University, Guiyang 550025
2 National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014
下载:  全 文 ( PDF ) ( 3316KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 卤系阻燃剂对生态环境和人体健康有较大的危害,因此绿色环保的无卤阻燃剂得到了较为快速的发展。无卤阻燃剂主要包括无机阻燃剂、有机硅阻燃剂和无卤膨胀型阻燃剂等。用于聚丙烯无卤阻燃的主要有铝、镁等无机金属化合物类阻燃剂,以及利用聚磷酸铵为主体复配而成的一类无卤膨胀型阻燃剂。卤系阻燃剂存在阻燃效果低、添加量大等缺陷,严重损害基体的力学性能,而添加某些无机纳米粒子可在一定程度上提升其阻燃效果。
本文围绕无机纳米粒子与聚丙烯这两大类阻燃剂的阻燃协同效应,概述了改善无机纳米粒子与聚丙烯基体分散性的表面改性方法,并阐述了无机纳米粒子协同阻燃聚丙烯的机理与发展现状。主要介绍了蒙脱土、海泡石、碳基填料等无机纳米粒子协同聚丙烯无卤阻燃复合材料的研究进展,并展望了无机纳米粒子无卤阻燃剂填充改性阻燃聚丙烯的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗继永
张道海
田琴
魏柯
周密
杨胜都
关键词:  无机纳米粒子  聚丙烯  协同效应  无卤阻燃  复合材料    
Abstract: The use of halogen-based flame retardants has caused great damage to the ecological environment and human health, so the green halogen-free flame retardant has developed rapidly. Halogen-free flame retardants mainly include inorganic flame retardants, silicone flame retardants and halogen-free intumescent flame retardants. The halogen-free flame retardant for polypropylene mainly includes inorganic metal compound flame retardants such as aluminum and magnesium, and a type of halogen-free intumescent flame retardant which is compounded by ammonium polyphosphate. However, the flame retardant effect of the halogen-based flame retardant is low, and the addition amount and the like seriously impair the mechanical properties of the matrix. The addition of certain inorganic nanoparticles can enhance the flame retardant effect to some extent.
This paper summarizes the improvement of the dispersion of inorganic nanoparticles and polypropylene matrix by the flame retardant synergistic effect of inorganic nanoparticles and polypropylene. The surface modification method and the synergistic mechanism and development status of the inorganic nanoparticle flame retardant polypropylene. It mainly introduces the non-halogen flame retardant of inorganic nanoparticle synergistic polypropylene such as montmorillonite, sepiolite, and carbon-based filler. The research progress of composite materials and the development trend of inorganic nanoparticle halogen-free flame retardant filled modified flame retardant polypropylene
Key words:  inorganic nanoparticles    polypropylene    synergistic effect    halogen-free flame retardant    composite
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TQ314.24  
基金资助: 贵州省科技计划项目(黔科合人才 [2016]5630;黔科合平台人才[2017]5623;黔科合基础[2017]1091;黔科合成果[2016]2812、[2019]4022;黔科合支撑[2018]1012);贵阳市白云区科技计划项目(白科合同[2017]65)
作者简介:  罗继永,毕业于贵州大学,现为贵州大学材料与冶金学院研究生,现在从事高性能复合材料研发及应用。张道海,研究员,贵州大学材料学博士,现从事高性能复合材料的开发及应用。先后在国内外学术刊物上发表学术论文100余篇,申请专利50余件,已授权30余件。zhangdaohai6235@163.com
引用本文:    
罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
LUO Jiyong, ZHANG Daohai, TIAN Qin, WEI Ke, ZHOU Mi, YANG Shengdu. Research Progress of Inorganic Nanoparticles Synergistic Halogen-free Flame Retardant Polypropylene. Materials Reports, 2019, 33(z1): 499-504.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/499
1 孙凯, 徐东东, 娄小安,等. 塑料工业,2013,41(6),5.
2 丁海燕.共聚物包覆PTFE抗滴落剂的制备与性能研究.硕士学位论文,浙江工业大学,2016.
3 Boyles E, Tan H, Wu Y, et al. Environmental Pollution,2017,221,191.
4 Bai C, Liu M. Angewandte Chemie International Edition,2013,52(10),2678.
5 Kango S, Kalia S, Celli A, et al. Progress in Polymer Science,2013,38(8),1232.
6 Mallakpour S, Khadem E. Progress in Polymer Science,2015,51,74.
7 孟庆捷. 河南化工,2017,34(4),11.
8 Wang H, Shi X, Zhao S. Journal of Macromolecular Science Part B,2014,53(5),769.
9 Sheng Y, Li P, Chen Y. Advances in Polymer Technology,2014,33(S1),1.
10 于娜娜, 陈东方, 秦兵杰,等.精细与专用化学品,2013,21(1),51.
11 虞鑫海, 吴冯.绝缘材料,2014(4),6.
12 Chen M, Tang M, Qi F, et al. Journal of Fire Sciences,2015,33(5),374.
13 刘国胜. 协同膨胀阻燃聚丙烯研究,博士学位论文.北京理工大学,2014.
14 Jiang L, Zhang C, Liu M, et al. Composites Science & Technology,2014,91,98.
15 Yu B, Wang X, Qian X, et al. RSC Advances,2014,4(60),31782.
16 Feng C M, Liang M Y, Jiang J L, et al. Journal of Analytical and Applied Pyrolysis,2016,122,405.
17 Yongbin Chen, Tao Zhou, Huaxiong Fang,et al. Procedia Engineering,2015,102,388.
18 Tahir M, Amin N A S . Applied Catalysis B Environmental,2013,142(5),512.
19 Younis A A. Egyptian Journal of Petroleum,2016,26(1),1.
20 Navarchian A H, Joulazadeh M, Mousazadeh S.Journal of Vinyl & Additive Technology,2013,19(4),276.
21 Hanifi S, Oromiehie A, Ahmadi S, et al. Journal of Vinyl & Additive Technology,2014,20(1),16.
22 Kooshki R M, Ghasemi I, Karrabi M, et al. Journal of Vinyl & Additive Technology,2013,19(3),203.
23 Zhu H , Li J , Zhu Y , et al. Polymers for Advanced Technologies,2014,25(8),872.
24 Tian Qin, Qin Shuhao, Wu Fuzhong, et al. Journal of Thermoplastic Composite Materials,2017,30(3),341.
25 Liu J,Fu M,Jing M,et al. Polymers for Advanced Technologies,2013,24(3),273.
26 白卯娟, 金杨, 王勇,等.现代塑料加工应用,2015,27(1),60.
27 郭义, 申明霞, 韩永芹.粘接,2015(2),73.
28 Xiao D, Li Z, Zhao X, et al. Applied Clay Science,2017,143,192.
29 Liu H, Zhong Q, Kong Q, et al. Journal of Thermal Analysis & Calorimetry,2014,117(2),693.
30 郭妍婷, 黄雪, 陈曼,等.化工新型材料,2017(3),37.
31 王明义, 韩强, 纪莲清,等. 广东化工,2016,43(6),3.
32 Jin J , Wang H , Shu Z , et al. Journal of Materials Science,2017,52(6),3269.
33 Qinghong Kong, Ting Wu, Hongkai Zhang,et al. Applied Clay Science,2017,146,230.
34 Wen P, Wang D, Liu J J, et al. Polymers for Advanced Technologies,2016,28(6),1.
35 Kong Q, Wu H, Zhang H, et al. Journal of Nanoscience & Nanotechnology,2016,16(8),8287.
36 Liu L, Zhang H, Sun L, et al. Journal of Thermal Analysis and Calorimetry,2016,124(2),807.
37 Feng C M, Yi Z, Dong L, et al. Procedia Engineering,2013,52,97.
38 张肖肖,章圆方,杨守坤,等. 非金属矿,2018,41(1),49.
39 Laoutid F, Persenaire O, Bonnaud L, et al. Polymer Degradation and Stability,2013,98(10),1972.
40 Zhan Z, Xu M, Li B. Polymer Degradation and Stability,2015,117,66.
41 闫永岗, 韦平, 王仕峰,等.工程塑料应用,2014(5),80.
42 He M, Cao W C, Wang L J, et al. Polymers for Advanced Technologies,2013,24(12),1081.
43 Pappalardo S, Russo P, Acierno D, et al. European Polymer Journal,2016,76,196.
44 Hapuarachchi T D, Peijs T, Bilotti E. Polymers for Advanced Technologies,2013,24(3),331.
45 Qin Z, Li D, Li Q, et al. Materials & Design,2016,89,988.
46 Huang G, Wang S, Song P A, et al. Composites Part A Applied Science and Manufacturing,2014,59(2),18.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed