Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 457-461    
  高分子与聚合物基复合材料 |
交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究
马攀龙1,2, 张忠厚1, 韩琳1, 陈荣源1
1 郑州轻工业大学材料与化学工程学院,郑州 450001
2 河南省科学院化学研究所有限公司,郑州 450002
Study on Polyacrylonitrile Gel Polymer Electrolyte Films Reinforced by Crosslinking Agent and Non-woven Fabrics
MA Panlong1,2, ZHANG Zhonghou1, HAN Lin1, CHEN Rongyuan1
1 Department of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001
2 Institution of Chemistry, Henan Academy of Sciences, Zhengzhou 450002
下载:  全 文 ( PDF ) ( 1554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验通过原位聚合的方法成功制备乙二醇二甲基丙烯酸酯(EGDMA)交联的聚丙烯腈基凝胶聚合物电解质(PAN-EGDMA-GPE)膜和无纺布复合聚丙烯腈基凝胶聚合物(NWF-PAN-EGDMA-GPE)膜,利用红外光谱仪、综合热分析仪、万能试验机和电化学工作站分别对其分子结构、热性能、拉伸强度和离子电导率进行表征。结果表明:EGDMA交联剂和PP无纺布都可以明显提高GPE膜的拉伸强度;当EGDMA的用量为单体质量的2.5%,LiClO4的浓度为1 mol/L,电解液质量含量为PAN-EDGMA-GPE的87.5%时,NWF-PAN-EGDMA-GPE膜的拉伸强度为8.47 MPa,比未增强的聚丙烯腈凝胶聚合物电解质的拉伸强度(0.26 MPa)提高了31.6倍;同时,离子电导率为1.24×10-3 S/cm,具有最好的综合性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马攀龙
张忠厚
韩琳
陈荣源
关键词:  凝胶聚合物电解质  聚丙烯腈  交联  无纺布  复合    
Abstract: The polyacrylonitrile based gel polymer electrolyte (PAN-EGDMA-GPE) cross-linked by ethylene glycol dimethacrylate (EGDMA), and the PAN-EGDMA-GPE composited with the non-woven fabrics (NWF-PAN-EGDMA-GPE) were successfully prepared by in-situ polymerization. The molecular structure, thermal properties, tensile strength and ionic conductivity of GPE films were detected with the infrared spectrometer, integrated thermal analyzer, universal testing machine and electrochemical workstation. The results showed that the tensile strength of GPE films were significantly improved by EGDMA cross-linker and PP non-woven fabrics. When the amount of EGDMA used was 2.5%( weight) of the monomer, the concentration of LiClO4 was 1 mol/L, and the electrolyte mass content was 87.5% of PAN-EGDMA-GPE, the NWF-PAN-EGDMA-GPE film had the comprehensive performance, the tensile strength of that was 8.47 MPa, which was increased by 31.6 times, comparing to the 0.26 MPa of the unreinforced polyacrylonitrile GPE, the ionic conductivity of that was 1.24×10-3 S/cm.
Key words:  gel polymer electrolyte    polyacrylonitrile    cross-link    non-woven fabrics    composite
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O631.5  
  TM911.3  
作者简介:  马攀龙,2015年6月毕业于郑州轻工业大学,获得工程硕士学位。现为河南省科学院化学研究所有限公司实习研究员,主要从事高分子复合材料和电子化学品领域的研究工作。张忠厚,郑州轻工业大学材料与化学工程学院教授、硕士研究生导师。1986年6月本科毕业于郑州大学化学系, 2009年2月在东华大学材料学专业取得博士学位,2002年6月至今在郑州轻工业大学任教,主要从事功能性高分子材料、复合材料和阻燃材料的研究工作。先后发表专业论文20余篇,完成10余项科技项目(包括国家级项目1项,省级项目5项),获得河南省科技进步二等奖1项、三等奖2项。gxncl272@163.com
引用本文:    
马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
MA Panlong, ZHANG Zhonghou, HAN Lin, CHEN Rongyuan. Study on Polyacrylonitrile Gel Polymer Electrolyte Films Reinforced by Crosslinking Agent and Non-woven Fabrics. Materials Reports, 2019, 33(z1): 457-461.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/457
1 Li W L, Wu Y H, Wang J W, et al. European Polymer Journal,2015,67,365.
2 Kang W M, Ma X M, Zhao H H, et al. Journal of Solid State Electrochem,2016,20,2791.
3 Peng X X, Zhou L, Jing B, et al. Journal of Solid State Electrochem,2016,20,255.
4 Song S H, Wang J W, Tang J W, et al. Ionics,2017,23,3365.
5 Peng S S, Cao Q, Jing Yang, et al. Solid State Ionics,2015,282,49.
6 Tong Y F, Que M M, Su S, et al. Ionics,2016,22,1311.
7 Li W L, Xing Y J, Wu Y H, et al. Electrochimica Acta,2015,151,289.
8 Kang W M, Deng N P, Ma X M, et al. Electrochimica Acta,2016,216,276.
9 黄兆阁, 张宁. 青岛科技大学学报(自然科学版),2017,38(4),59.
10 He C F, Liu J Q, Cui J Q. et al. Solid State Ionics,2018,315,102.
11 张帆,管兴华,马晓燕,等. 高分子学报,2015(7),852.
12 Huang Y, Liu B, Cao H J, et al. Journal of Solid State Electrochem,2017,21,2291.
13 Liu B, Huang Y, Cao H J, et al. Journal of Membrane Science,2018,545,140.
14 邓纯,肖琴,漆志刚,等. 高分子材料科学与工程,2017,33(8),151.
15 Wang Q F, Zhang B, Zhang J J, et al. Electrochimica Acta,2015,157,191.
16 Yang K Q, Ma X Y, Sun K, et al. Journal of Solid State Electrochem,2018,22,441.
17 Liu Y, Ma X Y, Sun K, et al. Journal of Solid State Electrochem,2018,22,581.
18 Chen T T, Liao Y H, Wang X S, et al.Electrochimica Acta,2016,191,923.
19 周锦涛,焦晓宁,于宾,等. 高等学校化学学报,2017,38(6),1018.
20 Luo X Y, Liao Y H, Xie H L, et al. Ionics,2016,22,1035.
21 Luo X Y, Liao Y H, Xie H L, et al. Electrochimica Acta,2016,220,47.
22 Li Z H, Chen T T, Liao Y H.Ionics,2015,21,2763.
23 Hang T T Le, Duc Tung Ngo, Ramchandra S Kalubarme, et al.ACS Applied Materials & Interfaces,2016,8,20710.
24 Wu D Z, He J L, Zhang M Z, et al. Journal of Power Sources,2015,290,53.
25 Zhao M K, Zuo X X, Wang C Y, et al. Ionics,2016,22,2123.
26 Huang W Y, Liao Y H, Li G J, et al. Electrochimica Acta,2017,251,145.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 曾伟. 架空导线用热塑性复合芯棒卷绕试验及仿真[J]. 材料导报, 2019, 33(z1): 94-97.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[8] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[9] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[10] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[13] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[14] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[15] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed