Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 428-431    
  金属与金属基复合材料 |
低碳微合金管材TIG焊热影响区软化成因分析
周勇1, 冯雪楠1, 毕宗岳2, 田小江2, 王雷1, 李博锋2
1 西安石油大学材料科学与工程学院,西安 710065
2 宝鸡石油钢管有限责任公司钢管研究院,宝鸡 721008
Analysis of Softening Cause of TIG Welding Heat Affected Zone in Low Carbon Microalloyed Tube
ZHOU Yong1, FENG Xuenan1, BI Zongyue2, TIAN Xiaojiang2, WANG Lei1, LI Bofeng2
1 School of Material Science and Engineering, Xi’an Shiyou University, Xi’an 710065
2 Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008
下载:  全 文 ( PDF ) ( 2143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对低碳微合金管材在环焊对接中产生的热影响区(HAZ)软化问题,采用光学显微镜、EBSD技术和透射电镜对板材、管材及环焊HAZ的组织结构进行了对比研究。结果表明,板材的晶粒度在12~13级之间,属于超细晶粒,组织为粒状贝氏体;制管过程中由于形变强化,管材中小角度晶界所占比例上升,相比于板材增加了27.5%,变形晶粒比例由变形前的8.75%增至变形后的78.75%,位错密度由原先的4.2×1013 /m2增加到1.9×1014 /m2。随着环焊热循环的影响,热影响区中部分区域硬度大幅下降,出现了软化现象。研究发现,软化区小角度晶界减小11.8%,位错密度下降至3.9×1013 /m2,与板材处于同一水平。因此,晶粒长大,位错密度下降,再结晶比例增加等是低碳微合金管材环焊接头产生软化的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周勇
冯雪楠
毕宗岳
田小江
王雷
李博锋
关键词:  低碳微合金管材  环焊  软化区    
Abstract: With aim to solve the softening problem of heat affected zone (HAZ) in girth welding of low carbon microalloyed tube, the microstructure of plate, tube and HAZ was analyzed by optical microscope (OM), EBSD and transmission electron microscope (TEM).The results show that the grain size of the plate is between 12 and 13 grade which belongs to ultrafine grain range, and the microstructure is granular bainite. Due to the deformation strengthening during the process of tubulation,the fraction of the low-angle grain boundary increase by 27.5% compared with plate metal. The fraction of the deformed grain increase from 8.75% to 78.75% after deformation. The dislocation density rise from the original 4.2×1013 /m2 to 1.9×1014 /m2 after deformation. With influence of the thermal cycle of girth welding, the hardness in the part of HAZ is greatly reduced, and softening occurs. Furthermore, in the softening region, the low angle grain boundary decreases by 11.8%, and the dislocation density decreases to 3.9×1013 /m2, at the same level of plate. Therefore, the grain growth, the dislocation density decrease, and the recrystallization ratio increase are main reasons for the softening of girth welding joint of low carbon microalloyed tube.
Key words:  low carbon microalloyed tube    girth welding    softening zone
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG47  
基金资助: 国家科技重大专项(2016ZX05023006-001-002);中石油集团公司项目(2015F-2001);陕西省教育厅科研计划(18JK0604);西安石油大学“材料科学与工程”省级优势学科资助(YS37020203)
作者简介:  周勇,教授,硕士研究生导师。主要从事石油工程材料的焊接与表面工程技术研究。主持和参加科研项目20余项;参编教材1部;获陕西省科技进步二等奖,中国石油天然气总公司科技进步三等奖各一项;在国内外公开刊物上发表学术论文50余篇。yzhou@xsyu.edu.cn
引用本文:    
周勇, 冯雪楠, 毕宗岳, 田小江, 王雷, 李博锋. 低碳微合金管材TIG焊热影响区软化成因分析[J]. 材料导报, 2019, 33(z1): 428-431.
ZHOU Yong, FENG Xuenan, BI Zongyue, TIAN Xiaojiang, WANG Lei, LI Bofeng. Analysis of Softening Cause of TIG Welding Heat Affected Zone in Low Carbon Microalloyed Tube. Materials Reports, 2019, 33(z1): 428-431.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/428
1 毕宗岳.管线钢管焊接技术, 石油工业出版社,2013.
2 毕宗岳, 张昆, 雷阿利, 等.焊接学报,2011,32(4),29.
3 Mochizuki M, Shintomi T, Hashimoto Y, et al. Welding in the World,2004,48(9),2.
4 Hochhauser D I F, Rauch M R. Welding in the World,2012,56(5-6), 77.
5 董现春, 张楠, 陈延清, 等.焊接学报,2012,33(11),72.
6 Mohandas T, Madhusudan Reddy G, Satish Kumar B. Journal of Mate-rials Processing Technology,1999,88(1), 284.
7 牛靖, 陈宏远, 刘甲, 等.热加工工艺,2016(21),176.
8 毕宗岳.焊管,2012,35(9),5.
9 朱小平.钻采机械,2000,23(6),51.
10 李博锋, 刘云, 汪强, 等.钢管,2018,47(3),16.
11 李鸿美, 张慧杰, 孙力军, 等.稀有金属,2010,34(s1),97.
12 胡赓祥, 蔡珣, 戎咏华. 材料科学基础(第三版), 上海交通大学出版社,2010.
13 He W, Ma W, Pantleon W. Materials Science & Engineering A,2008,494(1-2),21.
14 Pantleon W. Scripta Materialia,2008,58(11),994.
15 Pantleon W. Metal Science Journal,2013,21(12),1392.
[1] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[2] 张昊,黄永德,郭跃,陆青松. 适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 128-134.
[3] 陈建华,张喜燕,任毅. 热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*[J]. 材料导报编辑部, 2017, 31(10): 56-60.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed