Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 56-60    https://doi.org/10.11896/j.issn.1005-023X.2017.010.012
  材料研究 |
热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*
陈建华,张喜燕,任毅
重庆大学材料科学与工程学院, 重庆 400044
Influence of Heat Input on the TIG Welding-brazing Bonding Characteristics of AZ31B Magnesium Alloy/PRO500 Ultra-high Strength Steel
CHEN Jianhua, ZHANG Xiyan, REN Yi
College of Materials Science and Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 1261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用TIG电弧作为热源开展了AZ31B镁合金与超高强钢PRO500熔-钎连接试验,研究了不同焊接热输入条件对接头微观结构及力学性能的影响。结果表明:利用TIG电弧能够实现AZ31B镁合金/PRO500钢的有效熔-钎连接,强度可达镁合金母材的85%,接头界面区形成由Fe-Mg-O化合物、金属间化合物AlFe3相和基体Fe元素、熔敷金属中扩散过来的Mg元素等共同组成的过渡区;随着焊接电流的增大,AZ31B镁合金/PRO500钢熔-钎焊接头断裂模式由包含了延性断裂和准解理断裂的混合断裂模式转化为准解理断裂主导的脆性断裂模式,结合强度显著下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈建华
张喜燕
任毅
关键词:  热输入  镁合金  超高强钢  熔-钎焊  特性    
Abstract: Experiments of TIG welding-brazing of AZ31B magnesium alloy and PRO500 steel were carried out to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. The results indicated that a effective bonding achieved between AZ31B magnesium alloy and PRO500 steel by TIG welding-brazing method. Under a optimized current process parameters, the strength of the joint could reach 85% of the Mg alloy base metal. The transition zone in the interface was formed including the formation of the Fe-Mg-O compounds, the AlFe3 intermetallic compound (IMC), and the cross diffusion of the elements Fe and Mg from the substrate. The fracture mode of AZ31B/PRO500 joint presented a mixed-rupture characteristics of quasi-cleavage and tearing at a smaller heat input. With the increase of welding current, the fracture mode changed to a brittle rupture with the lea-ding role of the quasi-cleavage fracture. Then the bonding strength decreased obviously.
Key words:  heat input    magnesium alloy    ultra-high strength steel    welding-brazing    characteristic
                    发布日期:  2018-05-08
ZTFLH:  TG47  
基金资助: *国家自然科学基金(51271208)
通讯作者:  张喜燕,男,1958年生,博士,教授,博士研究生导师,研究方向为金属材料加工E-mail:kehen888@163.com   
作者简介:  陈建华:男,1974年生,博士研究生,研究方向为金属材料加工E-mail:jianh_chen@163.com
引用本文:    
陈建华,张喜燕,任毅. 热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*[J]. 材料导报编辑部, 2017, 31(10): 56-60.
CHEN Jianhua, ZHANG Xiyan, REN Yi. Influence of Heat Input on the TIG Welding-brazing Bonding Characteristics of AZ31B Magnesium Alloy/PRO500 Ultra-high Strength Steel. Materials Reports, 2017, 31(10): 56-60.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.012  或          http://www.mater-rep.com/CN/Y2017/V31/I10/56
1 Maity S K, Rajak A K, Shekhar M C, et al. Development of ultra high strength steel by electroslag refining and thermomechanical treatment[J]. Trans Indian Institute Metals,2015,69(3):1.
2 Mandal P K, Kant R. Effect of microalloying elements on mechanical properties in the high strength low alloy steel[J]. J Biotechnol,2015,830-831(6):231.
3 Xi L P, Yang L, Gao X, et al. Experimental study on the welding properties of the ultra-high strength steel DomexProtect500[J]. Automobile Technol Mater,2015(7):7(in Chinese).
习吕鹏,杨丽,高翔,等.超高强钢DomexProtect500焊接性能试验研究[J].汽车工艺与材料,2015(7):7.
4 Zhang Z M, Zhang X, Wang Q, et al. Research on lightweight design of heavy vehicle transmission and action components[J]. J Mech Eng,2012,48(18):67(in Chinese).
张治民,张星,王强,等.重型车辆传动行动构件轻量化设计研究[J].机械工程学报,2012,48(18):67.
5 Yu K, Li W X, Wang R C, et al. Research, development and application of wrought magnesium alloys[J]. Chinese J Nonferrous Me-tals,2003,13(2):277(in Chinese).
余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277.
6 Zhang D F, Zhang H J, Lan W, et al. Some research progress of high-strength magnesium alloys[J]. Trans Mater Heat Treatment,2012,33(6):1(in Chinese).
张丁非,张红菊,兰伟,等.高强镁合金的研究进展[J].材料热处理学报,2012,33(6):1.
7 Schneider C, Weinberger T, et al. Characterisation of interface of steel/Mg FSW[J]. Sci Technol Welding Joining,2011,16(1):100.
8 Chen Y C, Nakata K. Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded Mg alloy and steel[J]. Mater Des,2009,30:3913.
9 Liu L, Xiao L, Feng J C, et al. The mechanisms of resistance spot welding of magnesium to steel[J]. Metall Mater Trans A:Phys Me-tall Mater Sci,2010,41:2651.
10 Zhao X, Song G, Liu L M. Microstructure of dissimilar metal joint with magnesium alloy AZ31B and steel 304 for laser-tungsten inert gas lap welding[J]. Trans China Welding Institution,2006,27(12):53(in Chinese).
赵旭,宋刚,刘黎明.镁和钢异种金属熔焊接头微观组织分析[J]. 焊接学报,2006,27(12):53.
11 Liu L M, Zhao X. Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding[J]. Mater Charact,2008,59:1279.
12 Xie L C, Chen Z H, Yu Z H. CO2 laser welding process on ZK60 magnesium alloy[J]. J Central South University:Sci Technol,2011,42(5):1332(in Chinese).
谢丽初,陈振华,俞照辉.ZK60镁合金的CO2激光焊接工艺研究[J].中南大学学报:自然科学版,2011,42(5):1332.
13 Zhang M J, Chen G Y, et al. Research on microstructure and mechanical properties of laser keyhole welding-brazing of automotive galvanized steel to aluminum alloy[J]. Mater Des,2013,45(6):24.
14 Xu C, Sheng G, Wang H, et al. Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology[J]. Sci Technol Welding Joining,2014,19:703.
15 Li L, Tan C, Chen Y, et al. Comparative study on microstructure and mechanical properties of laser welded-brazed Mg/mild steel and Mg/stainless steel joints[J]. Mater Des,2013,43:59.
16 Miao Y, Wu B, Xu X, et al. Effect of heat input on microstructure and mechanical properties of joints made by bypass-current MIG welding-brazing of magnesium alloy to galvanized steel[J]. Acta Metall Sin,2014,27(6):1038.
17 Zhao G J, Sheng G M, Wu L L, et al. Interfacial characteristics and microstructural evolution of Sn-6.5Zn solder/Cu substrate joints during aging[J]. Trans Nonferrous Metals Soc China,2012,22(8):1954.
18 Vassent J L, Marty A, Gilles B, et al. Thermodynamic analysis of molecular beam epitaxy of MgO(s) Ⅱ. Epitaxial growth of MgO la-yers on Fe(001) substrates[J]. J Cryst Growth,2000,219(4):444.
19 Pierre D, Viala J C, Peronnet M, et al. Interface reactions between mild steel and liquid Mg-Mn alloys[J]. Mater Sci Eng A,2003,349(1-2):256.
[1] 张博强, 吴心平, 陈慧勇, 魏凤春, 朱丽峰, 李振涛, 李良. 局域共振型声子晶体在轮边驱动客车上的应用研究初探[J]. 材料导报, 2019, 33(z1): 141-144.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[7] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[10] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[11] 程灵, 杨富尧, 马光, 孟利, 陈新, 韩钰, 董瀚. 复杂服役工况下取向硅钢的磁特性与铁心材料选型[J]. 材料导报, 2019, 33(14): 2413-2418.
[12] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[13] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[14] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[15] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed