Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 178-183    
  无机非金属及其复合材料 |
Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展
杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春
海军工程大学动力工程学院,武汉 430032
Research Progress of Influencing Factors of Preparation Process and Composite of Si3N4 Foamed Ceramics
YANG Feiyue, ZHAO Shuang, CHEN Guobing, CHEN Jun, YANG Zichun
College of Power Engineering, Naval University of Engineering, Wuhan 430032
下载:  全 文 ( PDF ) ( 4559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Si3N4泡沫陶瓷具有低密度、低热导率、优异高温稳定性等特点,在隔热、高温催化剂载体等诸多领域有着极大的应用潜力。近年来,学术界深入研究了Si3N4泡沫陶瓷的制备工艺优化对其组成成分,孔隙率、孔径分布和孔径大小等结构参数,以及力学性能、热导率和介电常数等性能的影响。本文全面分析了陶瓷粉体的类别和粒径、烧结助剂的组成和含量、固相含量、烧结升温速率以及保温时间等工艺参数对Si3N4泡沫陶瓷的微观结构及各项性能的影响规律,为新型Si3N4泡沫陶瓷的设计提供借鉴与指导。介绍了Si3N4泡沫陶瓷与气凝胶、树脂、金属等材料复合化实现互补效应的最新研究进展,并对相关研究领域的前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨飞跃
赵爽
陈国兵
陈俊
杨自春
关键词:  氮化硅  泡沫陶瓷  粉体  烧结助剂  固相含量  烧结制度  复合    
Abstract: Si3N4 foam ceramics have great application potential in many fields such as heat insulation and high temperature catalyst carrier due to their low density, low thermal conductivity and excellent high temperature stability. In recent years, the academic community has intensively stu-died the effects of the preparation process of Si3N4 foam ceramics on their composition, porosity, pore size distribution and pore size, as well as mechanical properties, thermal conductivity and dielectric constant. In this paper, the influences of the type and particle size of ceramic powder, the composition and content of sintering aid, solid phase content, sintering heating rate and holding time on the microstructure and properties of Si3N4 foam ceramics are analyzed. And the paper can provide reference and guidance for the design of the new type Si3N4 foam ceramics. The latest research progress of the composite of Si3N4 foam ceramics with aerogel, resin, metal and other materials is introduced which has the advantage of complementary effect, and the prospects of related research fields are prospected.
Key words:  silicon nitride    foamed ceramic    ceramic powder    sintering additive    solid phase content    sintering system    composite
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51802347);湖北省自然科学基金(2018CFB183)
作者简介:  杨飞跃,2017年6月毕业于哈尔滨工业大学,获得工学学士学位。现为海军工程大学动力工程学院硕士研究生,在杨自春教授的指导下进行研究。目前主要研究方向为氮化硅泡沫陶瓷基热防护材料。杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖2项、二等奖1项,先后入选教育部“新世纪优秀人才支持计划”,“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Cera-mic SocietyCeramics International等期刊发表研究论文100余篇。yangzichun11@sina.com
引用本文:    
杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
YANG Feiyue, ZHAO Shuang, CHEN Guobing, CHEN Jun, YANG Zichun. Research Progress of Influencing Factors of Preparation Process and Composite of Si3N4 Foamed Ceramics. Materials Reports, 2019, 33(z1): 178-183.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/178
1 Bodišová K, Kašiarová M, Domanická M, et al. Ceramics International,2013,39(7),8355.
2 Kamperman M, Burns A, Weissgraeber R, et al. Nano Letters,2009,9(7),2756.
3 C,al kan F, Demir A, Tatli Z. Journal of Porous Materials,2013,20(6),1501.
4 Ohji T. Materials Science & Engineering A,2008,498(1-2),5.
5 Ma H S, Feng C, Chang J, et al. Acta Biomaterialia,2018,79,37.
6 Notario B, Pinto J, Rodriguez-Perez M A. Progress in Materials Science,2016,78-79,93.
7 Eswara P N, Bhaduri S B. Aerospace Materials and Material Technologies,2017,1,415.
8 Yao D X, Xia Y F, Zuo K H, et al. Journal of the European Ceramic Society,2014,34(15),3461.
9 Vakifahmetoglu C, Zeydanli D, Paolo Colombo. Materials Science & Engineering: R,2016,106,15.
10 Yang Z G, Yu J B, Li C J, et al. Transactions of the Indian Ceramic Society,2016,75(4),256.
11 Ohji T, et al. Engineered Ceramics: Current Status and Future Prospects,2015,pp.98.
12 Cree D, Pugh M. Journal of Materials Processing Technology,2010,210(14),1905.
13 Kathy L. Materials Science & Engineering: R,2015,97,23.
14 Garrna I, Reetza C, Brandesb N, et al. Journal of the European Ceramic Society,2004,24(3),579.
15 Zhang R B, Qu Q, Han B Y, et al. Materials Letters,2016,175,219.
16 Wakihara T, Yabuki H, Tatami J, et al. Journal of the American Ceramic Society,2008,91(10),3413.
17 Moraes E G, Colombo P. Materials Letters,2014,128,128.
18 Benedetti I, Aliabadi M H. Computational Materials Science,2013,67,249.
19 Xu Z Y, Wang B, Yang J F, et al. Journal of the American Ceramic So-ciety,2014,97(11),3392.
20 Liu T T, Jiang C F, Guo W. Journal of Rare Earths,2017,35(2),172.
21 Zoran K, Vladimir K. Journal of Materials Science,2012,47(2),535.
22 Yin L Y, Zhou X G, Yu J S, et al. Materials and Design,2016,89,620.
23 Park D, Kim H, Lim K T, et al. Materials Science & Engineering A,2005,405(1),158.
24 Xu J, Luo F, Zhu D M, et al. Materials Science & Engineering A,2008,488(1),167.
25 Krstic Z, Krstic D V. Journal of the European Ceramic Society,2011,31(9),1841.
26 Dai K, Shigeru A, Gen T, et al. International Journal of Applied Ceramic Technology,2012,9(2),229.
27 董薇, 汪长安, 尉磊, 等. 复合材料学报,2013,30(1),125.
28 Chakraborty P, Zhang Y, Tonks M R, et al. Computational Materials Science,2016,113,38.
29 Yu F L, Yang J F, Xue Y H, et al. Journal of the Chinese ceramic society,2008,36(8),1307.
30 Itoh H, Okamura H, Asanoma S, et al. Journal of the Ceramic Society of Japan,2013,121(5),401.
31 董薇, 汪长安, 尉磊, 等. 硅酸盐学报,2012,40(6),851.
32 Matsunaga C, Zhou Y, Kusano D, et al. International Journal of Applied Ceramic Technology,2017,14(6),1157.
33 Zoran K, Yu Z B, Vladimir K. Journal of Materials Science,2007,42(14),5431.
34 蒋强国, 古尚贤, 刘伟, 等. 人工晶体学报,2015,44(10),2869.
35 尉磊, 汪长安, 魏乔苑, 等. 硅酸盐学报,2011,39(7),1197.
36 李玉涛, 汪长安, 赵晨辰. 稀有金属材料与工程,2011,40(A1),540.
37 Coble R L, Kingery W D. Journal of the American Ceramic Society,1956,39(11),377.
38 Yin L Y, Zhou X G, Yu J S, et al. Journal of the European Ceramic Society,2013,33(7),1387.
39 Kim M, Park J, Lee H, et al. Materials Science & Engineering A,2005,408(1),85.
40 Moulson A J. Journal of Materials Science,1979,14(5),1017.
41 Ye F, Zhang J Y, Zhang H J, et al. Materials Scie-nce and Engineering: A,2010,527(24-25),6501.
42 Alveen P, Carolan D, Mc Namara D, et al. Computational Materials Scie-nce,2013,79,960.
43 Zhou Y, Ohji T, Hyuga H, et al. International Journal of Applied Cera-mic Technology,2014,11(5),872.
44 Sun Y Q, Zhao Z H, Li X L, et al. Ceramics International,2018,44(5),5233.
45 Ingvild B S, Astrid B, Tangstad Merete, et al. Journal of Crystal Growth,2010,312(16-17),2404.
46 Hong C Q, Han J C, Zhang X H, et al. Scripta Materialia, 2013, 68(8), 599.
47 Huang Y J, Gong L L, Pan Y L, et al. RSC Advances,2018,8(5),2350.
48 Ferkl P, Pokorny R, Bobák M, et al. Chemical Engineering Science,2013,97,50.
49 Sundarram S S, Li W. Polymer Engineering and Science,2013,53(9),1901.
50 Moore A L, Li S. Materials Today,2014,17(4),163.
51 He H, Fu R, Shen Y, et al. Composites Science and Technology,2007,67(11),2493.
52 Liu S C, Gao S X, Li W, et al. Ceramics International,2017,43(12),9348.
53 王星, 王玉璋. 材料导报:研究篇,2013,27(10),143.
54 Yin L Y, Zhou X G, Yu J S, et al. Composites Part A: Applied Science and Manufacturing,2016,90,626.
55 Ramesh C S, Keshavamurthy R, Channabasappa B H, et al. Materials Science and Engineering A,2009,502(1-2),99.
56 Martinaviius A, Van Landeghem H P, Danoix R, et al. Materials Letters,2017,189,25.
57 Zhuang Y L, Lin T S, Wang S J, et al. Journal of the European Ceramic Society,2017,37(10),3293.
58 Pasternak L, Paz Y. RSC Advances,2018,8(4),2161.
59 张杰, 方健, 刘春凤, 等. 中国专利,CN108640522A,2018.
60 Wang C, Wang H J, Fan X Y, et al. Journal of the European Ceramic Society,2015,35(6),1743.
61 Li W K, Chen F Y, Huang L, et al. Key Engineering Materials,2014,602-603,138.
62 Seiner H, Ramirez C, Koller M, et al. Materials and Design,2015,87,675.
63 Alveen P, Mc Namara D, Carolan D, et al. Computational Materials Scie-nce,2014,92,318.
64 Yang Y P, Li B, Zhang C R, et al. Materials Science and Engineering: A,2015,644,90.
65 Ramirez C, Leboren V, Rivadulla F, et al. Ceramics International,2016,42(9),11341.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 曾伟. 架空导线用热塑性复合芯棒卷绕试验及仿真[J]. 材料导报, 2019, 33(z1): 94-97.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[7] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[8] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[9] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[10] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[11] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[12] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[13] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[14] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[15] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed