Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 48-52    
  无机非金属及其复合材料 |
TiO2基光电化学传感器电极结构调控的研究进展
齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙
安徽省农业科学院畜牧兽医研究所,畜禽产品安全工程安徽省重点实验室,合肥 230031
Research Progress on Electrode Structure Regulation of TiO2-basedPhotoelectrochemical Sensor
QI Yunxia, ZHAO Xiaowei, YANG Yongxin, HUANG Dongwei, ZHAO Huiling, DING Haisheng,CHENG Guanglong
Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Science, Hefei 230031
下载:  全 文 ( PDF ) ( 2172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiO2因具有无毒、廉价、化学稳定性好以及表面易修饰生物基团等优点,受到研究者的广泛关注。然而,TiO2存在对太阳能可见光利用率低、光生电子空穴易发生复合等缺点。通过与窄带隙半导体、有机分子、碳材料和贵金属等材料复合,可提高TiO2的光吸收能力、光生电子空穴分离能力,进而拓展TiO2的实际应用领域。本文对基于TiO2的光电化学传感器的研究进展进行了概述,其中重点介绍了通过TiO2纳米材料的改性来提高TiO2基光电化学传感器的传感性能,最后提出了TiO2复合纳米材料光电化学传感器的优势和不足,展望了其未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐云霞
赵小伟
杨永新
黄冬维
赵辉玲
丁海生
程广龙
关键词:  光电化学传感器  TiO2  复合材料  光生电荷  敏化    
Abstract: TiO2 has attracted considerable attentions from researchers due to its advantages of non-toxicity, low cost, good chemical stability and easy modification of biological groups. However, TiO2 has disadvantages such as low utilization of solar visible light, and easy recombination of photogenerated electron-hole pairs, which greatly hampers its researches and potential utilities. In order to solve these problems, the method of constructing composite nanomaterials with narrow bandgap semiconductors, organic molecules, carbon materials and noble metals were applied to modify TiO2. This paper reviews the progress and present status of TiO2 photoelectrochemical sensors, and introduces the improvement of sensing performance of TiO2 photoelectrochemical sensors through modification of TiO2 nanomaterials. Finally, the advantages and disadvantages of TiO2 composite nanomaterials photoelectrochemical sensors are presented, and the future development trend of TiO2 photoelectrochemical sensors is prospected.
Key words:  photoelectrochemical sensors    TiO2    composite materials    photo-induced charges    sensitization
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  O65  
基金资助: 公益性行业(农业)科研专项课题(201403071-3);安徽省牛羊产业技术体系;安徽省重点研究与开发计划项目(1804a07020138)
通讯作者:  cgl0126@126.com   
作者简介:  齐云霞,博士,毕业于中国科学技术大学,目前主要从事牛奶质量安全生物传感检测的研发。
程广龙,安徽省农业科学院畜牧兽医研究所研究员,主要从事牛奶品质与质量安全检测、饲料营养等方面的研究,在牛奶品质调控及奶牛健康养殖研究等方面具有一定的研究经验。获安徽省科学技术奖一等奖、二等奖各1项;发表论文50余篇。
引用本文:    
齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
QI Yunxia, ZHAO Xiaowei, YANG Yongxin, HUANG Dongwei, ZHAO Huiling, DING Haisheng,CHENG Guanglong. Research Progress on Electrode Structure Regulation of TiO2-basedPhotoelectrochemical Sensor. Materials Reports, 2019, 33(Z2): 48-52.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/48
1 Zhao W W, Xu J J, Chen H Y. Chemistry Society Reviews,2015,44(15),729.
2 Cowan A J, Durrant J R. Chemistry Society Reviews,2013,42(6),2281.
3 Du X J, Dai L M, Jiang D, et al. Biosensorss and Bioelectronics,2017,91,706.
4 Liu X P, Chen J S, Mao C J, et al. Analytica Chimica Acta,2018,1025,99.
5 Chen X B, Mao S S. Journal of Cheminformatics,2007,38(41),2891.
6 Tang J, Li J, Da P M, et al. Chemistry,2015,21(32),11288.
7 Tian J, Zhao Z, Kumar A, et al. Chemistry Society Reviews,2014,43(20),6920.
8 Fan L F, Zhao G H, Shi H J, et al. Environmental Science & Technology,2014,48(10),5754.
9 Wang Y, Bian F, Qin X F, et al. Microchimica Acta,2018,185(3),161.
10 Fan G C, Zhu H, Du D, et al. Analytical Chemistry,2016,88(6),3392.
11 Liu X Q, Huo X H, Liu P P, et al. Electrochimica Acta,2017,242,327.
12 Liu P P, Liu X Q, Huo X H, et al. ACS Applied Materials & Interfaces,2017,9,27185.
13 Xue J, Gao C M, Zhang L N, et al. Journal of Materials Chemistry B,2018,6,4697.
15 Wang K W, Xu L J, Sun N, et al. Analytical Methods,2015,7(18),7443.
16 Zhang Y, Xia Z, Liu H, et al. Sensors and Actuators B,2013,188(11),496.
17 Gu C J, Kong F Y, Chen Z D, et al. Biosensorss and Bioelectronics,2016,78,300.
18 Zhu Y H, Yan K, Xu Z W, et al. Journal of The Electrochemical Society,2016,163(9),B526.
19 Li Q H, Wu J H, Tang Q W, et al. Electrochemistry Communications,2008,10(9),1299.
20 Li X Y, Wang D S, Cheng G X, et al. Applied Catalysis B,2008,81(3),267.
21 Zhu J, Huo X H, Liu X Q, et al. ACS Applied Materials & Interfaces,2016,8,341.
22 Loget G, Yoo J E, Mazare A, et al. Electrochemistry Communications,2015,52,41.
23 Li J N, Li X Y, Zhao Q D, et al. Sensors and Actuators B,2018,255,133.
24 Zhang S P, Xu G F, Gong L S, et al. Journal of Materials Chemistry B,2015,3,7554.
25 Koichi A, Makoto F, Carsten R, et al. Journal of the American Chemical Society,2008,130(5),1676.
26 Qian K, Sweeny B C, Johnston-Peck A C, et al. Journal of the American Chemical Society,2014,136(28),9842.
27 Clavero C. Nature Photonics,2014,8(2),95.
28 Sudhagar P, Devadoss A, Terashima C,et al. Journal of Materials Che-mistry B,2016,4(2),220.
29 Wang Z, Cao M, Yang L, et al. Analyst,2017,142(15),2805.
30 Guo L M, Li Z, Marcus K, et al. ACS Sensors,2017,2(5),621.
31 Li H B, Li J, Qiao Y F, et al. Sensors and Actuators B,2017,243,1027.
32 Dai H, Zhang S P, Hong Z S, et al. Analytical Chemistry,2014,86,6418.
33 Wang Y F, Bai L, Wang Y L, et al. Analyst,2018,143(7),1699.
34 Kim U J, Kim T G, Shim Y, et al. ACS Nano,2015,9(1),602.
35 Li Y L, Zhang S P, Hong D, et al. Sensors and Actuators B,2016,232,226.
36 Yan Y T, Liu Q, Du X J, et al. Analytica Chimica Acta,2015,853,258.
37 Zhang K Y, Lv S Z, Lin Z Z, et al. Biosensorss and Bioelectronics,2017,95,34.
38 Zhang L, Jing D W, She X L, et al. Journal of Materials Chemistry A,2014,2(7),2071.
39 Kang Q, Wang X X, Ma X L, et al. Sensors and Actuators B,2016,230,231.
40 Wang F X, Ye C, Mo S, et al. Analyst,2018,143,3399.
41 Atchudan R, Muthuchamy N, Edison T N J I, et al. Biosensorss and Bioelectronics,2019,126,160.
42 Yang Y Z, Lin X F, Lin W L, et al. ACS Applied Materials & Interfaces,2017,9(17),14953.
43 Cheng W J, Zheng Z Y, Yang J Y, et al. Electrochimica Acta,2019,296(10),627.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[3] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[4] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[5] 马立云, 汤永康, 鲍田, 金良茂, 甘治平, 李刚. 宽谱增透双层TiO2-SiO2/SiO2薄膜的制备与性能[J]. 材料导报, 2019, 33(Z2): 161-164.
[6] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[7] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[8] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[9] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[10] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[11] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[12] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[13] 郭强, 徐恒元, 何凯, 孙振萍, 李逸. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 634-638.
[14] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[15] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed