Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 473-479    
  金属与金属基复合材料 |
可回收锚件机理与工程应用研究
邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮
西安科技大学建筑与土木工程学院,西安 710054
Research on Retrievable Anchor Mechanism and Its Engineering Application
DENG Yousheng, CAI Mengzhen, WANG Yixiong, SU Jialin, SUN Yani
School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 2091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国自1954年起开始将锚杆支护用于煤矿围岩支护工程中,至今已有60多年的历史。初期由于煤矿地质条件复杂、井巷围岩变形量大、监测手段不完善等,锚杆支护在我国发展缓慢。我国煤矿资源丰富,到20世纪90年代,国家对煤矿开采投资的加大,我国支护技术从单一的锚杆发展到锚索,并开始将其应用于基坑支护等其他工程中。同时,随着人们对地下空间利用的加深,锚件支护的弊端也暴露出来。锚件永久丢弃在地下,对环境产生污染从而加大了地下空间后续利用的难度。与传统锚件相比,可回收锚件具有以下优点:(1)锚件可重复利用,总体成本降低;(2)锚件不会停留地下,利于保护环境。
然而,随着可回收锚件在各个领域中应用的加深,各类岩体的物理力学性能存在较大差异,可回收锚件需要从多个角度出发,探索新结构、新形式与围岩协调变形机理、多种环境作用下的耦合变形以及大变形围岩可回收锚件的适用性问题。可回收锚件的种类众多,锚固机理复杂多样,没有较为统一的锚固原理;部分可回收锚件的施工工艺复杂,回收所需的人力、物力较大,增加了施工成本及工期,不利于大面积推广使用;一次成本投入过高,回收后没有具体的应用途径,目前还没有形成较完整的产业链。因此,近些年来除了可回收锚件种类不断增多外,对锚固机理的研究也不断增多,并取得了不错的成果。增加可回收锚件在实际工程中的应用,监测可回收锚件在一定时间内的变形,增进产学研结合,形成示范效应,部分工程中锚件体的回收率可达100%。
本文首先阐述了压力分散锚件锚固机理较主流的研究方法;其次从回收机理等方面分析了拉拔式可回收锚件、热熔式可回收锚索和机械式可回收锚索,并介绍其在国内的具体工程应用;最后指出可回收锚件目前发展中存在的问题,并展望了其对未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓友生
蔡梦真
王一雄
苏家琳
孙雅妮
关键词:  可回收锚杆  可回收锚索  锚固机理  可持续发展    
Abstract: China has been using bolt support for coal mine support projects since 1954 and has a history of more than 60 years. At the beginning of the introduction, due to the complicated geological conditions of coal mines, large deformation of surrounding rock of roadway, and imperfect monitoring methods, bolt supporting is developing slowly in China. Chinese coal resources are abundant. By the 1990s, the state’s investment in coal mining has increased, and China’s bolt supporting technology has been greatly developed, and it is increasingly used in other filds. At the same time, with the using of underground space, the drawbacks of bolt supporting are also exposed. The bolts are permanently discarded in the ground, which pollute the environment and increase the difficulty of subsequent utilization of underground space. Compared with traditional anchors, retrievable anchors have the following advantages: (1) the anchors can be reused and the overall cost is reduced; (2) the anchors do not stay underground, which is conducive to environmental protection.
However, with the deepening of the application of recyclable anchors in various fields, the physical and mechanical properties of various rock masses are quite different. Recyclable anchors need to be explored from multiple angles to explore new structures, new forms and surrounding rock coordination. Deformation mechanism, coupling deformation under various environmental effects and applicability of retrievable anchors for large deformation surrounding rock. There are many types of retrievable anchors, and the anchoring mechanism is complex and diverse. There is no uniform anchoring principle; the construction process of some retrievable anchors is complicated, the manpower and material resources required for recycling are large, and the construction cost and construction period are increased, which is not conducive to it is promoted and used; the cost is too high, and there is no specific application route after recycling, and a relatively complete industrial chain has not yet been formed. Therefore, in recent years, in addition to the increasing variety of retrievable anchors, the research on the anchoring mechanism has been increasing, and has achieved excellent results. Increase the application of the retrievable anchor in actual engineering, monitor the deformation of the recoverable anchor in a certain period of time, enhance the combination of production, study and research, and form a demonstration effect. In some projects, the recovery rate of the bolt body can reach 100%.
Firstly, the research method of anchoring mechanism of pressure-dispersed anchors was described. Secondly, the pullable retrievable anchor, hot-melt retrievable anchor cable and mechanical recyclable were analyzed from the anchoring mechanism, and introduce its specific engineering application at home. Finally, the research pointed out the problems of the recoverable anchor, and looked forward to its future development direction.
Key words:  retrievable anchor    retrievable bolt    anchoring mechanism    sustainable development
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TU601  
基金资助: 国家自然科学基金(51878554;41672308;51378182) ;陕西省自然科学基础研究计划重点项目(2018JZ5012)
通讯作者:  1450753577@qq.com   
作者简介:  邓友生,1969年生,博士,教授,博士研究生导师。2005年东南大学土木工程学院桥梁与隧道工程专业工学博士毕业,先后在武汉理工大学与湖南大学土木工程学科博士后流动站从事科学研究,并如期出站。中国土木工程学会土力学与岩土工程分会桩基础学术委员会委员。主要从事桥梁基础工程与房屋建筑基础工程、工程结构防灾减灾等方面的教学与研究工作。以第一作者或通讯作者在40多种国内外学术期刊发表研究论文80余篇,其中被SCI与EI检索20余篇;主编出版教材5部,其中1部获得北京大学出版社特等奖,参编《桩基工程手册》(第2版);授权国家专利5项;主持国家自然科学基金面上项目3项和省重点项目2项、参与交通部西部交通科技项目和交通部企业联合攻关项目、中铁大桥局集团科研项目等多项;获省级科技奖励3项。
引用本文:    
邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
DENG Yousheng, CAI Mengzhen, WANG Yixiong, SU Jialin, SUN Yani. Research on Retrievable Anchor Mechanism and Its Engineering Application. Materials Reports, 2019, 33(Z2): 473-479.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/473
1 Shah R, Gasol K. Rock Bolt Support Manual, Water Resources and Hydropower Press, Beijing,1986.
2 Zhang Houquan, Miao Xiexing, Zhang Guimin, et al. International Journal of Mining Science and Technology,2017,27(6),989.
3 Mohammad Mohammadi,Mohammad Farouq Hossaini,Heydar Bagloo. Bulletin of Engineering Geology and the Environment,2017,76(1),231.
4 Shi Jie, Lin Peng, Zhou Yuande, et al. Rock Mechanics and Rock Engineering,2018,51(8),2533.
5 Chen Guoqing, Chen Tuo, Chen Yi, et al. Engineering Geology,2018,241,109.
6 Wang Yaen,Wang Yuanhan,Xie Hongyang. Journal of China University of Geosciences,2007(2),185.
7 侯庆.压力分散型锚杆工作机理与现场试验研究.博士学位论文.重庆大学,2003.
8 卢黎,张永兴,吴曙光.岩土力学,2008(6),1517.
9 张季如,唐保付.岩土工程学报,2002(2),188.
10 庞有师,刘汉龙,龚医军.岩土力学,2010,31(6),1813.
11 张鑫鑫,符贵军,刘海康,等.公路,2017,62(11),1.
12 李晓军,李世民,徐宝.施工技术,2015,44(7),37.
13 钟晓晖,邵孟新,罗振平.建筑监督检测与造价,2015,8(2),28.
14 刘鸿,周德培,王志斌.岩石力学与工程学报,2012,31(S1),3075.
15 刘鸿,周德培.岩土力学,2012,33(4),1040.
16 叶红,陈燕平.金属矿山,2015(4),114.
17 Barley A D, Payne W D, Mebarron P L. In: 12th, Europeane Conference in Soilmechnics and Geotechnical Engineering. Amaterdam,1999,pp.1465.
18 陆观宏,倪光乐,莫海鸿.岩土工程,2006,9(5),38.
19 张为.新型预应力锚索技术研究及应用.博士学位论文,重庆交通大学,2016.
20 苏州市能工基础工程有限责任公司.中国专利,201611163994.4,2017.
21 赵志孟,郑先昌,王建强.城市勘测,2015(4),173.
22 张吉雄,李青峰,欧阳昶,等.矿山压力与顶板管理,2005,4(7),7.
23 冯梅梅,茅献彪.矿山压力与顶板管理,2005(4),14.
24 黄靖龙.新型机械式可回收端锚杆支护机理及应用研究.博士学位论文,中国矿业大学,2009.
25 石义习,时永康,赵徇.山东工业技术,2016(22),84.
26 李兆平,黄明利,王建,等.地下空间与工程学报,2012,8(1),154.
27 曾庆义.中国专利,200610061974.6,2007.
28 李保国,宁锐,林建平,易建伟,等.施工技术,2007(9),37.
29 李锡银.中国水运,2008,8(9),187.
30 李习伟,王建,李兆平.铁道建筑,2016(8),100.
31 杨新安,陆士良.中国煤炭,1995(3),5.
32 Kang Yongshui,Liu Quansheng, Xi Hailong, et al. Engineering Geology,2018,240,10.
33 Wang Haitao, Tong Cheng, Wang Yajun, et al. IOP Conference Series: Earth and Environmental Science,2018,186,5.
34 Li Qinghai, Shi Weiping, Qin Zhongcheng. SpringerPlus,2016,5(1),1.
35 董国庆,方小伟,王振刚,等.中国矿业,2006(9),98.
36 Kim Nak-Kyung. Journal of Geotechnical and Geoenvironmental Enginee-ring,2003,129(12),1055.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed