Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 134-137    
  无机非金属及其复合材料 |
采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理
樊伟1, 田甜1, 崔艳芳1, 周淑娟2
1 中国兵器工业集团第五二研究所,包头 014034;
2 包头稀土研究院,包头 014030
Reveal Thermal Insulation Mechanism of the New Type Erosion Reducing Materialsof (Sm1-XGdX)2Zr2O7 by Detonation Spraying
FAN Wei1, TIAN Tian1, CUI Yanfang1, ZHOU Shujuan2
1 No.52 Research Institute of China Ordnance Industry, Baotou 014034;
2 Baotou Research Institute of Rare Earchs, Baotou 014030
下载:  全 文 ( PDF ) ( 2581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以(Sm1-XGdX)2Zr2O7为研究对象,以微晶蜡作为载体,通过14.5 mm弹道枪膛壁温度测试试验,开展(Sm1-XGdX)2Zr2O7降膛壁温度效果研究。结果表明,在不装填(Sm1-XGdX)2Zr2O7试样的条件下,14.5 mm弹道枪坡膛内壁最高温度为957 ℃,在装填质量比为1∶2(微晶蜡:钐钆复合物锆酸盐)试样条件下,5发坡膛内壁最高温度的平均值为869 ℃,降温效果明显。通过半密闭爆发冲刷试验,开展(Sm1-XGdX)2Zr2O7用量及爆炸压力对沉积层的影响研究,包括分散性及化学组成。研究结果表明,在60 MPa和2 500 K条件下,随着(Sm1-X-GdX)2Zr2O7用量的增加,沉积层变厚,沉积层中存在(Sm1-XGdX)2Zr2O7且分散良好;在(Sm1-XGdX)2Zr2O7试样质量比为1∶2及2 500 K条件下,随着爆炸压力的增加,沉积层变薄, 沉积层中存在(Sm1-XGdX)2Zr2O7且分散良好。最终得出隔热机理为:在高温条件下,试样融化吸收部分热量,同时高压条件形成的气流携带(Sm1-XGdX)2Zr2O7高速冲刷枪管内壁,部分(Sm1-XGdX)2Zr2O7沉积到内壁,在界面结合处形成了一层均匀分布的沉积层,综合起到隔热保护作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊伟
田甜
崔艳芳
周淑娟
关键词:  爆炸喷涂  缓烧蚀添加剂  火炮身管  钐钆复合物锆酸盐    
Abstract: (Sm1-XGdX)2Zr2O7 was taken as the research object, and microcrystalline wax was used as the carrier.The cooling barrel wall temperature effect of (Sm1-XGdX)2Zr2O7 was investigated through barrel wall temperature test of 14.5 mm ballistic gun.The results showed that the maximum temperature of inner wall was 957 ℃ without loading (Sm1-XGdX)2Zr2O7 sample.The average value of 5 slopes maximum temperature of inner wall was 869 ℃ with a mass ratio of 1∶2 (microcrystalline wax∶(Sm1-XGdX)2Zr2O7 zirconates)sample, the cooling effect was obvious.The effects of (Sm1-XGdX)2Zr2O7 dosage and explosion pressure on the deposited layer were studied through the closed burst scour test, including dispersion and chemical composition.The results showed that the more the (Sm1-XGdX)2Zr2O7 was used, the thicker the sedimentary layer was at 60 MPa and 2 500 K. (Sm1-XGdX)2Zr2O7 was existed and well dispersed in the sedimentary layer.The greater the explosion pressure, the thinner the sedimentary layer under the condition of 1∶2 mass ratio and 2 500 K, (Sm1-XGdX)2Zr2O7 was existed and well dispersed in the sedimentary layer. Finally, we knew the heat insulation mechanism of (Sm1-XGdX)2Zr2O7.It absorbed part of the heat at high temperature,At the same time the air flow formed by the high pressure condition carried the (Sm1-XGdX)2Zr2O7 scours the inner wall of the gun barrel at high speed.Part of (Sm1-XGdX)2Zr2O7 was deposited onto the inner wall, a uniformly distributed sedimentary layer was formed at the interface junction which played the role of heat insulation protection in a comprehensive way.
Key words:  detonation spraying    erosion reducing additives    gun barrel    (Sm1-XGdX)2Zr2O7 zirconates
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TJ410.4  
通讯作者:  fanwei100@126.com   
作者简介:  樊伟,2013年6月毕业于大连理工大学,获得全日制硕士学位。2013年8月至今一直在中国兵器工业集团第五二研究所工作,主要从事弹药缓烧蚀添加剂领域的研究。
引用本文:    
樊伟, 田甜, 崔艳芳, 周淑娟. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(Z2): 134-137.
FAN Wei, TIAN Tian, CUI Yanfang, ZHOU Shujuan. Reveal Thermal Insulation Mechanism of the New Type Erosion Reducing Materialsof (Sm1-XGdX)2Zr2O7 by Detonation Spraying. Materials Reports, 2019, 33(Z2): 134-137.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/134
1 Ronald L. Simmons.In:Gun&Ammunition SymPosium, San Diego,2001.
2 陈永才,宋遒志,王建中.兵工学报,2006,27(2),330.
3 甘霖,陶凤和,卢兴华,等.火炮发射与控制学报,2006(2),10.
4 赵新生,于伟,于旭东,等.润滑与密封,2008,33(11),32.
5 梁西瑶,任英良.兵器材料科学与工程,1997,20(3),24.
6 梁西瑶.微细滑石粉缓蚀剂降烧蚀性能研究.硕士学位论文,西南交通大学,2000.
7 陈永才,宋遒志,王建中.兵工学报,2007,28(3),329.
8 宋遒志,王建中,陈永才,等.兵工学报,2009,30(3),289.
9 宋遒志,王建中,陈永才.北京理工大学学报,2007,27(8),662.
10 胡善宝.缓蚀添加剂的微胶囊技术研究.硕士学位论文,南京理工大学,2008.
11 李洪广,闫军,汪明球,等.无机材料学报,2015,30(1),47.
12 葛朝晖,余永刚,曹连忠,等.兵器材料科学与工程,2009,32(6),42.
No related articles found!
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed