Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 617-624    https://doi.org/10.11896/cldb.201904010
  无机非金属及其复合材料 |
细粒式薄表层沥青混合料中粗集料的骨架特性
李微1,韩森1,,黄啟波2,姚腾飞1,徐鸥明3
1 长安大学特殊地区公路工程教育部重点实验室,西安 710064;
2 东南大学交通运输学院, 南京 210096;
3 长安大学材料科学与工程学院, 西安 710064
The Skeleton Characteristics of Coarse Aggregates in Granular Thin-layer Asphalt Mixture
LI Wei1, HAN Sen1, HUANG Qibo2, YAO Tengfei1, XU Ouming3
1 Key Laboratory for Special Areal Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064;
2 Transportation Portage College, Southeast University, Nanjing 210096;
3 School of Material Science and Engineering, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 7825KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究薄表层沥青混合料的骨架特性,同时为保证公称最大粒径9.5 mm(UTL-10)矿料级配的稳定性,在4.75 mm与9.5 mm筛孔中间增设7.5 mm筛孔,通过捣实密度试验分析了不同粗集料配比的集料骨架间隙率(VCA)。同时,提出了利用粗集料-沥青胶浆试件的单轴贯入试验来研究不同组合的粗集料抗剪强度相关参数,确定了薄表层粗集料的级配设计控制指标,最终给出了薄表层粗集料的推荐配比范围。结果表明:集料内摩阻角φ能够很好地反映粗集料级配的骨架强度稳定性;采用VCA和内摩阻角φ双重指标可以有效控制薄表层沥青混合料的粗集料配比设计;公称最大粒径为13.2 mm(UTL-13)矿料级配三档集料含量的推荐范围分别为12.5%~22.2%,37.5%~44.4%,33.3%~50%;UTL-10三档集料含量的推荐范围分别为10%~16.7%,40%~50%,33.3%~50%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李微
韩森
黄啟波
姚腾飞
徐鸥明
关键词:  道路工程  薄表层沥青混合料  粗集料-沥青胶浆  内摩阻角φ  粗集料配比    
Abstract: This work aimed to explore the skeleton characteristics of thin-layer asphalt mixture and to ensure the aggregate gradation stability of UTL-10. We introduced 7.5 mm sieve between 4.75 mm and 9.5 mm sieves, and carried out the dry-rodded test so as to analyze the voids in coarse aggregates (VCA) under different coarse aggregate contents. Meanwhile, we conducted uniaxial penetration test upon the coarse aggregate-asphalt mortar specimens, and thus the parameters related to shear strength of different coarse aggregate proportions were obtained. Consequently the indexes for the proportion control of coarse aggregate in ultra-thin asphalt mixture were determined, and the recommended ranges of coarse aggregates content were presented as well. The results indicated that the internal friction angle φ of coarse aggregate can be used to reflect the skeleton strength stability of coarse aggregate gradation. Meanwhile, by the combination of VCA and internal friction angle φ, the coarse aggregate proportion design of ultra-thin asphalt mixture can be effectively controlled. The UTL-13 recommended contents of the three coarse aggregate are 12.5%—22.2%,37.5%—44.4% and 33.3%—50%, respectively. And the UTL-10 recommended contents of the three coarse aggregate are 10%—16.7%,40%—50% and 33.3%—50% respectively.
Key words:  road engineering    thin-layer asphalt mixture    coarse aggregate-asphalt mortar    internal friction angle φ    coarse aggregate content
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TB34  
  U416.217  
基金资助: 国家自然科学基金(51578076)
作者简介:  李微,2013年6月毕业于长安大学,获学士学位。2015年9月至今,在长安大学继续攻读博士学位,主要从事路面工程及材料研究。韩森,教授,博士生导师,道路和机场路面研究中心主任,1982年加入长安大学(公路学院)教职员工。主要从事路面工程、道路建材等领域的教学、科研和技术咨询,在国内外核心期刊发表论文100余篇。许多研究项目获得中国公路学会和省政府奖,获得了20项国家发明专利,其中包括路面材料试验方法和测试设备。
引用本文:    
李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
LI Wei, HAN Sen, HUANG Qibo, YAO Tengfei, XU Ouming. The Skeleton Characteristics of Coarse Aggregates in Granular Thin-layer Asphalt Mixture. Materials Reports, 2019, 33(4): 617-624.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904010  或          http://www.mater-rep.com/CN/Y2019/V33/I4/617
1 Cao W D, Shen J R, Han H C. Petroleum Asphalt,2005,19(4),56(in Chinese).曹卫东,沈建荣,韩恒春.石油沥青,2005,19(4),56.2 Highway Scientific Research Institute of Ministry of Communications. Technical study on ultra-thin asphalt concrete surface, China Communications Press, China,2004(in Chinese).交通部公路科学研究院.超薄层沥青混凝土面层技术研究.人民交通出版社,2004.3 Sha Qinglin. Design and construction of SAC series of multi stone asphalt concrete. China Communications Press, China,2005(in Chinese).沙庆林.多碎石沥青混凝土SAC系列的设计与施工,人民交通出版社,2005.4 He C M, Su W G. Highway,2007(11),85(in Chinese).何春木,苏卫国.公路,2007(11),85.5 Li D P. Study on properties of ultra thin asphalt concrete surface. Master’s Thesis, Southeast University,China,2007(in Chinese).李大鹏.超薄沥青混凝土面层性能研究.硕士学位论文,东南大学,2007.6 Watson D E, Masad E, Moore K A, et al. In:83rd Annual Meeting of the Transportation Research Board. Washington D.C.,2004, pp.182.7 Zhu S Y, Chen S F, Dou H B, et al. Materials Review B: Research Papers,2015,29(1),133(in Chinese).祝斯月,陈拴发,豆怀兵,等.材料导报:研究篇,2015,29(1),133.8 Sun Y S, Xu D, Zhang W G. Materials Review B: Research Papers,2012,26(9),161(in Chinese).孙岩松,徐东,张文刚.材料导报:研究篇,2012,26(9),161.9 Shi L W, Wang D Y, Wu W L. Journal of Building Materials,2016(4),767(in Chinese).石立万,王端宜,吴文亮.建筑材料学报,2016(4),767.10 Shi L W, Wang D Y. China Journal of Highway and Transport,2014,27(8),23(in Chinese).石立万,王端宜.中国公路学报,2017,30(5),52.11 Bi Y F, Sun L J. Journal of Tongji University(Natural Science),2005,33(8),1037(in Chinese).毕玉峰,孙立军.同济大学学报(自然科学版),2005,33(8),1037.12 Li F P, Shen J A. Journal of Highway Transportation Res Development,2004,21(12),5(in Chinese).李福普,沈金安.公路交通科技,2004,21(12),5.13 Zhang X N, Wang S H, Wu K H. Highway,2001(12),17(in Chinese).张肖宁,王绍怀,吴旷怀,等.公路,2001(12),17.14 Sha Q L. Highway,2005(1),144(in Chinese).沙庆林.公路,2005(1),144.15 Zhao Y L. Composition mechanism of asphalt mixtures. Ph.D. Thesis, Southeast University,China,2005(in Chinese).赵永利.沥青混合料的结构组成机理研究.博士学位论文,东南大学,2005.16 Liu H Y.Technology of Highway and Transport,2004(3),25(in Chinese).刘红瑛.公路交通技术,2004(3),25.17 Gao Z W, Li H, Lei J. Science Technology and Engineering,2014(14),26(in Chinese).高志伟,李浩,雷剑.科学技术与工程,2014(14),26.
[1] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[2] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[3] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[4] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[5] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[6] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[7] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[8] 刘祥, 张正伟, 杨小龙, 邹晓龙. 多聚磷酸改性沥青研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 104-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed