Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2184-2190    https://doi.org/10.11896/cldb.18040294
  无机非金属及其复合材料 |
C/C复合材料孔隙结构的研究进展
樊凯,卢雪峰,吕凯明,钱坤
江南大学生态纺织教育部重点实验室,无锡 214122
Advances in Research on Pore Structure of C/C Composites
FAN Kai, LU Xuefeng, LYU Kaiming, QIAN Kun
Key Laboratory of Eco-Textiles Ministry of Education, Jiangnan university, Wuxi 214122
下载:  全 文 ( PDF ) ( 31533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 孔隙作为C/C复合材料结构中的重要组成部分,直接影响复合材料的致密化过程及其力学、氧化、烧蚀等性能,并赋予C/C复合材料许多潜在功能。C/C复合材料的致密化过程是基体炭不断填充碳纤维预制体内部孔隙的过程。从C/C复合材料的制备原理及工艺方面来说,C/C复合材料通常需要在碳氢气体若干个连续热分解周期下或在树脂、沥青等液相前驱体多个浸渍炭化循环下获得。
不同结构的碳纤维预制体内部纤维和纤维束的交织及取向排列各异,导致C/C复合材料内部孔隙大小及形状、孔隙分布、孔隙贯穿通道等各不相同,进一步导致液相或气相的前驱体浸渍预制体的难易程度、在预制体中的流动路径以及对孔隙的填充状况不尽相同。另外,每个致密化周期内,材料内部致密化程度、孔隙结构变化等均不相同。前驱体在预制体内的填充、炭化后的形态及分布等都会对下一个致密化周期中前驱体的扩散传输产生影响。因此,结构不同的预制体即使具有相同的初始密度,其制备的C/C复合材料也存在明显的性能差异。
孔隙对C/C复合材料性能的影响主要表现为材料力学性能及高温环境下材料的氧化、烧蚀行为的变化。在力学性能方面,一方面孔隙的存在减小了材料载荷承受面积,为材料发生形变提供了空间;另一方面,材料内部较大的孔隙或者微孔聚集处在受到外部载荷时会产生应力集中现象。此外,界面间的裂纹会在载荷作用下随着纤维与基体脱粘呈曲折扩展。在高温氧化环境中,大量的纤维束间的孔洞、基体中孔隙以及纤维/基体间的微裂纹将成为氧化气氛的扩散通道,从而加快氧化气体在材料内部的扩散以及碳纤维的氧化,进而导致复合材料迅速氧化失效。因此,需要根据应用环境,合理控制材料的孔隙数量和孔隙结构。
本文从孔隙形成原因、孔隙特征表征、孔隙对致密化过程及对材料性能的影响四个方面综述了国内外C/C复合材料孔隙结构的研究现状与进展,以期为深化C/C复合材料孔隙结构的理论研究、拓宽其应用领域奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊凯
卢雪峰
吕凯明
钱坤
关键词:  C/C复合材料  孔隙结构  致密化过程  抗氧化烧蚀性能    
Abstract: As an important part of C/C composites, pores directly affect the densification process and mechanical, oxidation, ablation performance of C/C composites, endow the C/C composite with many potential functions. The densification process of C/C composites is a process in which carbon matrix is continuously filled with pores in carbon fiber preform. According to the preparation principle and process of C/C composites, C/C composites usually require several successive thermal decomposition cycles of hydrocarbon gas, or multiple impregnated carbonization cycles of liquid phase precursors like resin and asphalt.
The variations in interwoven and oriented arrangement of fibers or fiber bundles in the carbon fiber preforms with different structure bring about the diversity of pore size and ship, pore distribution and pore passage of C/C composites, which further lead to the dissimilarity in the impregnation for the precursor into the preform, the flow path in the preform, and the filling state of the pores. In addition, the degree of internal densification and change of pore structure vary in the each densification cycle. Moreover, the filling of precursor in the preform and the morphology and distribution of the precursor after carbonization will affect the diffusion and transport of the precursor in the next densification cycle. Therefore, even if the preforms with diverse structures show the same initial density, the C/C composites still exhibit obviously different performance.
The effect of pores on the properties of C/C composites is mainly manifested by changes in mechanical properties, oxidation and ablation behavior in high temperature environments. In terms of mechanical properties, on the one hand, the pores reduce the load-bearing area and provide space for the deformation of the material. On the other hand, stress concentration will be generated at gathering location of large pores or micropores in the material when they are subjected to external loading. In addition, the interfacial crack will exhibit a tortuous expansion along with debonding between carbon and matrix. In high temperature oxidation environment, numerous pores and micro-cracks in the fiber bundles matrix and the fibers/matrix interface will provide the diffusion channel for oxygen, and consquently accelerate the diffusion of the oxidizing gas inside the material and the oxidation of the carbon fibers, which leads to the rapid oxidation failure of the composites. Therefore, it is necessary to reasonably control the pore number and pore structure according to the requirements of the application environment.
In a word,the research status and progress of pore structure of C/C composites at home and abroad are reviewed from four aspects, including the formation of pores, characterization of pores, impact of pores on the densification process and properties. For the sake of laying a foundation for deepening the theoretical study of the pore structure of C/C composites and broadening its application fields.
Key words:  C/C composite    pore structure    densification process    antioxidant ablation performance
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TB332  
基金资助: 江苏高校优势学科建设工程资助项目(PAPD);连云港市产业前瞻与共性关键技术科技项目(CG1520);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2016022-07);“十三五”国家重点研发计划项目(2016YFC0304301;2016YFB0303200);中央高校基本科研业务费专项资金资助(JUSRP51718A)
作者简介:  樊凯,现为江南大学纺织服装学院硕士研究生,2015年本科毕业于太原理工大学。在钱坤教授和卢雪峰副教授指导下,目前主要研究方向为纺织复合材料、C/C复合材料。
卢雪峰,现任江南大学纺织服装学院副教授,硕士生导师。2005年毕业于华东交通大学材料成型及其控制专业,获学士学位,2012年毕业于中南大学材料学专业,获得博士学位,主要研究方向为纺织复合材料、纳米纤维增强材料、C/C复合材料、摩擦材料等;主持江苏省产学研项目一项、中央高校基本科研业务费专项资金资助三项;参与973课题、国家重点研发计划、军工项目、江苏省产学研项目等10余项;主持与参与横向课题8项。在Carbon等国内外期刊发表论文18篇,申请国家发明专利12项,授权7项。
引用本文:    
樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
FAN Kai, LU Xuefeng, LYU Kaiming, QIAN Kun. Advances in Research on Pore Structure of C/C Composites. Materials Reports, 2019, 33(13): 2184-2190.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040294  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2184
1 Yi X S, Du S Y, Zhang L T.Composite materials handbook, Chemical Industry Press, China, 2009 (in Chinese).益小苏, 杜善义, 张立同. 复合材料手册, 化学工业出版社, 2009.2 Huang B Y, Xiong X.Manufacturing of carbon/carbon composites for aircraft brakes, Hunan Science & Technology Press, China, 2007 (in Chinese).黄伯云, 熊翔. 高性能炭/炭航空制动材料的制备技术, 湖南科学技术出版社, 2007.3 Zou W. Research on preparation and properties of three-dimensional carbon fiber reinforced silicon carbide matrix composites. Ph.D. Thesis, Northwest Polytechnical University, China, 2001 (in Chinese).邹武. 三维编织C/SiC复合材料的制备及其性能研究. 博士学位论文, 西北工业大学, 2001.4 Zheng J H, Li H J, Cui H, et al. Journal of Solid Rocket Technology, 2017, 40(2),221.5 Xie J B. Parametric modeling of needling process and constitutive relationship of needled composite. Ph.D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究. 博士学位论文, 哈尔滨工业大学, 2016.6 Zhang P. Microstructure modeling and prediction of effective properties of 3D needled C/C composites. Master's Thesis, Northwestern Polytechnical University, China, 2016 (in Chinese). 张盼. 三维针刺C/C复合材料的微结构建模及力学性能预测. 硕士学位论文, 西北工业大学, 2016.7 Savage G. Carbon-carbon composites, Chapman & Hall Press, UK, 1993.8 Zhou S J, Huang J, Wu S F, et al. Aerospace Materials & Technology, 2014, 44(6),42 (in Chinese).周绍建, 黄剑, 吴书锋, 等. 宇航材料工艺, 2014, 44(6),42.9 Li W, Chen Z, Li J, et al. Materials Science & Engineering, 2008, 485(1-2),481.10 Wu X J, Cheng W, Qiao S R, et al. Acta Metallurgica Sinica, 2009, 45(11),1402 (in Chinese).吴小军, 程文, 乔生儒, 等. 金属学报, 2009, 45(11),1402.11 Lu X F. Study on the microstructure and properties of C/C composites modified by in-situ grown nanofibers. Ph.D. Thesis, Central South University, China,2012 (in Chinese).卢雪峰. 原位生长纳米纤维改性C/C复合材料的微观结构及性能研究. 博士学位论文, 中南大学, 2012.12 Xiao P, Li D, Xu Y D, et al.Journal of Aeronautical Materials, 2002, 22(1),11.13 Xiong X, Long Y, Xiao P. Journal of Central South University, 2008, 39(2),209.14 Liu P S, Ma X M.Testing method for porous materials, Metallurgical Industry Press, China, 2006 (in Chinese).刘培生, 马晓明. 多孔材料检测方法, 冶金工业出版社, 2006.15 Li W. Porous characteristics and their influences on mass and heat transfer of Cf/SiC composites fabricated via the PIP process. Ph.D. Thesis, National University of Defense Technology, China, 2008 (in Chinese).李伟. PIP工艺制备Cf/SiC复合材料孔隙结构及其传热传质特性研究. 博士学位论文, 国防科学技术大学, 2008.16 Li X T, Zhang D S, Feng Z H, et al. Aerospace Materials & Technology, 2016, 26(1),42 (in Chinese).李新涛, 张东生, 冯志海, 等. 宇航材料工艺, 2016, 26(1),42.17 Weber E, Fernandez M, Wapner P, et al. Carbon, 2010, 48(8),2151.18 Wang L, Zhang F Q, Xia L H, et al. Mining and Metallurgical Enginee-ring, 2009, 29(4),95 (in Chinese).王蕾, 张福勤, 夏莉红, 等. 矿冶工程, 2009, 29(4),95.19 Liang S D, Effect of preform structure on flat CVI process and material properties. Master's Thesis, Central South University, China, 2011(in Chinese).梁世栋. 预制体结构对平板CVI过程及材料性能的影响. 硕士学位论文, 中南大学, 2011.20 Long Y. Effect of pore structure on CVI process and material properties. Master's Thesis, Central South University, China, 2008 (in Chinese).龙莹. 预制体孔隙结构对CVI过程及材料性能的影响. 硕士学位论文, 中南大学, 2008.21 Zhang J. Prepare and properties study of variable density preform C/C composite materials. Master's Thesis, Jiangnan University, China, 2014 (in Chinese).张洁. 变密度预制体C/C复合材料的制备及其性能研究. 硕士学位论文, 江南大学, 2014.22 Li Z, Long Y, Li Y, et al. Ceramics International, 2016, 42(8),9527.23 Klucˇáková M. Composites Science & Technology, 2004, 64(7),1041.24 Klucˇáková M. Acta Materialia, 2005, 53(14),3841.25 Jiang J, Xu Y D, Cai Y Z, et al. Acta Materiae Compositae Sinica, 2009, 26(5),105 (in Chinese). 姜娟, 徐永东, 蔡艳芝, 等. 复合材料学报, 2009, 26(5),105.26 Wang J F. Damage mechanism of carbon fibers during preparation of ceramic matrix composites by precursor infiltation pyrolysis. Master's Thesis, National University of Defense Technology, China, 2003 (in Chinese).王建方. 碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究. 硕士学位论文, 国防科学技术大学, 2003.27 Li H, Li T H, Ren C Q, et al.Carbon Techniques, 2005, 24(3),9 (in Chinese).李昊, 李铁虎, 任呈强, 等. 炭素技术, 2005, 24(3),9.28 Liao X L, Li H J, Fu Q G, et al.Materials Review, 2005, 19(7),100 (in Chinese).廖晓玲, 李贺军, 付前刚, 等. 材料导报, 2005, 19(7),100.29 Pang S Y, Hu C L, Yang Z, et al.Journal of Mechanical Engineering, 2018, 54(9),97 (in Chinese).庞生洋, 胡成龙, 杨鸷, 等. 机械工程学报, 2018, 54(9),97.30 An N, Li C J, Ji A L. Carbon Techniques, 2015 (3),27 (in Chinese).安娜, 李崇俊, 嵇阿琳. 炭素技术, 2015 (3),27.31 Qin T, Qi L H, Song Y S, et al. Materials Review B Research Papers, 2013, 27(3),140 (in Chinese).秦涛, 齐乐华, 宋永善, 等. 材料导报:研究篇, 2013, 27(3),140.32 Wang H B, Zhang W H, Yang J G, et al. Acta Materiae Compositae Sinica, 2008, 25(3),182 (in Chinese).汪海滨, 张卫红, 杨军刚, 等. 复合材料学报, 2008, 25(3),182.33 Ai S, Fang D, He R, et al. Composites Part B Engineering, 2014, 71,113.34 Liao J Q, Huang B Y, Shi G, et al. Journal of Central South University(Science and Technology), 2002, 33(5),500 (in Chinese).廖寄乔, 黄伯云, 石刚, 等. 中南大学学报(自然科学版), 2002, 33(5),500.35 Mei Z S, Shi C Y, Wu W E. Journal of Solid Rocket Technology, 2017, 40(6),762 (in Chinese).梅宗书, 石成英, 吴婉娥. 固体火箭技术, 2017, 40(6),762.36 Yang X, Huang Q Z, Su Z A, et al.Aerospace Materials & Technology, 2014, 44(1),1 (in Chinese).杨鑫, 黄启忠, 苏哲安, 等. 宇航材料工艺, 2014, 44(1),1.37 Xie J, Li K Z, Sun G D, et al. Ceramics International, 2017, 43,14642.38 Li C, Li K, Li H, et al. Corrosion Science, 2013, 75(7),169.39 Wang S L, Li K Z, Li H J, et al. Materials Letters, 2013, 107(10),99.40 Huang Y C. Research on oxidation technology of the carbon/carbon composites technique modified by borate. Master's Thesis, Shaanxi University of Science and Technology, China, 2014 (in Chinese).黄毅成. 碳/碳复合材料抗氧化硼酸盐改性技术的研究. 硕士学位论文, 陕西科技大学, 2014.41 Gao M J. The research on matrix modification of C/C composites and their oxidation resistance. Ph.D. Thesis,Shanghai University, China, 2013 (in Chinese).高孟姣. C/C复合材料的基体改性及其抗氧化研究. 博士学位论文, 上海大学, 2013.42 Shao C Y, Yin X W, Zhang L T, et al. Acta Materiae Compositae Sinica, 2012, 29(3),59 (in Chinese).邵春艳, 殷小玮, 张立同, 等. 复合材料学报, 2012, 29(3),59.43 Liu W, Liu R J, Cao Y B, et al. Fiber Reinforced Plastics/Composites, 2013(2),52 (in Chinese).刘伟, 刘荣军, 曹英斌, 等. 玻璃钢/复合材料, 2013(2),52.44 Wang L L, Ma W M, Ji A L, et al.Journal of Materials Engineering, 2014(7),34 (in Chinese).王玲玲, 马文闵, 嵇阿琳, 等. 材料工程, 2014(7),34.45 Cao Y, Liu R J, Cao Y B, et al. Journal of Materials Engineering, 2016, 44(7),19 (in Chinese).曹宇, 刘荣军, 曹英斌, 等. 材料工程, 2016, 44(7),19.46 Ma Q S, Liu H T, Pan Y, et al.Journal of Inorganic Materials, 2013, 28(3),247 (in Chinese).马青松, 刘海韬, 潘余, 等. 无机材料学报, 2013, 28(3),247.
[1] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[2] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[3] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[4] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[5] 李诗杰, 韩奎华, 韩旭东, 路春美. 马尾藻基高比表面积活性炭的制备及表征[J]. 《材料导报》期刊社, 2017, 31(6): 38-44.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed