Abstract: As an important part of C/C composites, pores directly affect the densification process and mechanical, oxidation, ablation performance of C/C composites, endow the C/C composite with many potential functions. The densification process of C/C composites is a process in which carbon matrix is continuously filled with pores in carbon fiber preform. According to the preparation principle and process of C/C composites, C/C composites usually require several successive thermal decomposition cycles of hydrocarbon gas, or multiple impregnated carbonization cycles of liquid phase precursors like resin and asphalt. The variations in interwoven and oriented arrangement of fibers or fiber bundles in the carbon fiber preforms with different structure bring about the diversity of pore size and ship, pore distribution and pore passage of C/C composites, which further lead to the dissimilarity in the impregnation for the precursor into the preform, the flow path in the preform, and the filling state of the pores. In addition, the degree of internal densification and change of pore structure vary in the each densification cycle. Moreover, the filling of precursor in the preform and the morphology and distribution of the precursor after carbonization will affect the diffusion and transport of the precursor in the next densification cycle. Therefore, even if the preforms with diverse structures show the same initial density, the C/C composites still exhibit obviously different performance. The effect of pores on the properties of C/C composites is mainly manifested by changes in mechanical properties, oxidation and ablation behavior in high temperature environments. In terms of mechanical properties, on the one hand, the pores reduce the load-bearing area and provide space for the deformation of the material. On the other hand, stress concentration will be generated at gathering location of large pores or micropores in the material when they are subjected to external loading. In addition, the interfacial crack will exhibit a tortuous expansion along with debonding between carbon and matrix. In high temperature oxidation environment, numerous pores and micro-cracks in the fiber bundles matrix and the fibers/matrix interface will provide the diffusion channel for oxygen, and consquently accelerate the diffusion of the oxidizing gas inside the material and the oxidation of the carbon fibers, which leads to the rapid oxidation failure of the composites. Therefore, it is necessary to reasonably control the pore number and pore structure according to the requirements of the application environment. In a word,the research status and progress of pore structure of C/C composites at home and abroad are reviewed from four aspects, including the formation of pores, characterization of pores, impact of pores on the densification process and properties. For the sake of laying a foundation for deepening the theoretical study of the pore structure of C/C composites and broadening its application fields.
樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
FAN Kai, LU Xuefeng, LYU Kaiming, QIAN Kun. Advances in Research on Pore Structure of C/C Composites. Materials Reports, 2019, 33(13): 2184-2190.
Yi X S, Du S Y, Zhang L T.Composite materials handbook, Chemical Industry Press, China, 2009 (in Chinese).益小苏, 杜善义, 张立同. 复合材料手册, 化学工业出版社, 2009.2 Huang B Y, Xiong X.Manufacturing of carbon/carbon composites for aircraft brakes, Hunan Science & Technology Press, China, 2007 (in Chinese).黄伯云, 熊翔. 高性能炭/炭航空制动材料的制备技术, 湖南科学技术出版社, 2007.3 Zou W. Research on preparation and properties of three-dimensional carbon fiber reinforced silicon carbide matrix composites. Ph.D. Thesis, Northwest Polytechnical University, China, 2001 (in Chinese).邹武. 三维编织C/SiC复合材料的制备及其性能研究. 博士学位论文, 西北工业大学, 2001.4 Zheng J H, Li H J, Cui H, et al. Journal of Solid Rocket Technology, 2017, 40(2),221.5 Xie J B. Parametric modeling of needling process and constitutive relationship of needled composite. Ph.D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究. 博士学位论文, 哈尔滨工业大学, 2016.6 Zhang P. Microstructure modeling and prediction of effective properties of 3D needled C/C composites. Master's Thesis, Northwestern Polytechnical University, China, 2016 (in Chinese). 张盼. 三维针刺C/C复合材料的微结构建模及力学性能预测. 硕士学位论文, 西北工业大学, 2016.7 Savage G. Carbon-carbon composites, Chapman & Hall Press, UK, 1993.8 Zhou S J, Huang J, Wu S F, et al. Aerospace Materials & Technology, 2014, 44(6),42 (in Chinese).周绍建, 黄剑, 吴书锋, 等. 宇航材料工艺, 2014, 44(6),42.9 Li W, Chen Z, Li J, et al. Materials Science & Engineering, 2008, 485(1-2),481.10 Wu X J, Cheng W, Qiao S R, et al. Acta Metallurgica Sinica, 2009, 45(11),1402 (in Chinese).吴小军, 程文, 乔生儒, 等. 金属学报, 2009, 45(11),1402.11 Lu X F. Study on the microstructure and properties of C/C composites modified by in-situ grown nanofibers. Ph.D. Thesis, Central South University, China,2012 (in Chinese).卢雪峰. 原位生长纳米纤维改性C/C复合材料的微观结构及性能研究. 博士学位论文, 中南大学, 2012.12 Xiao P, Li D, Xu Y D, et al.Journal of Aeronautical Materials, 2002, 22(1),11.13 Xiong X, Long Y, Xiao P. Journal of Central South University, 2008, 39(2),209.14 Liu P S, Ma X M.Testing method for porous materials, Metallurgical Industry Press, China, 2006 (in Chinese).刘培生, 马晓明. 多孔材料检测方法, 冶金工业出版社, 2006.15 Li W. Porous characteristics and their influences on mass and heat transfer of Cf/SiC composites fabricated via the PIP process. Ph.D. Thesis, National University of Defense Technology, China, 2008 (in Chinese).李伟. PIP工艺制备Cf/SiC复合材料孔隙结构及其传热传质特性研究. 博士学位论文, 国防科学技术大学, 2008.16 Li X T, Zhang D S, Feng Z H, et al. Aerospace Materials & Technology, 2016, 26(1),42 (in Chinese).李新涛, 张东生, 冯志海, 等. 宇航材料工艺, 2016, 26(1),42.17 Weber E, Fernandez M, Wapner P, et al. Carbon, 2010, 48(8),2151.18 Wang L, Zhang F Q, Xia L H, et al. Mining and Metallurgical Enginee-ring, 2009, 29(4),95 (in Chinese).王蕾, 张福勤, 夏莉红, 等. 矿冶工程, 2009, 29(4),95.19 Liang S D, Effect of preform structure on flat CVI process and material properties. Master's Thesis, Central South University, China, 2011(in Chinese).梁世栋. 预制体结构对平板CVI过程及材料性能的影响. 硕士学位论文, 中南大学, 2011.20 Long Y. Effect of pore structure on CVI process and material properties. Master's Thesis, Central South University, China, 2008 (in Chinese).龙莹. 预制体孔隙结构对CVI过程及材料性能的影响. 硕士学位论文, 中南大学, 2008.21 Zhang J. Prepare and properties study of variable density preform C/C composite materials. Master's Thesis, Jiangnan University, China, 2014 (in Chinese).张洁. 变密度预制体C/C复合材料的制备及其性能研究. 硕士学位论文, 江南大学, 2014.22 Li Z, Long Y, Li Y, et al. Ceramics International, 2016, 42(8),9527.23 Klucˇáková M. Composites Science & Technology, 2004, 64(7),1041.24 Klucˇáková M. Acta Materialia, 2005, 53(14),3841.25 Jiang J, Xu Y D, Cai Y Z, et al. Acta Materiae Compositae Sinica, 2009, 26(5),105 (in Chinese). 姜娟, 徐永东, 蔡艳芝, 等. 复合材料学报, 2009, 26(5),105.26 Wang J F. Damage mechanism of carbon fibers during preparation of ceramic matrix composites by precursor infiltation pyrolysis. Master's Thesis, National University of Defense Technology, China, 2003 (in Chinese).王建方. 碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究. 硕士学位论文, 国防科学技术大学, 2003.27 Li H, Li T H, Ren C Q, et al.Carbon Techniques, 2005, 24(3),9 (in Chinese).李昊, 李铁虎, 任呈强, 等. 炭素技术, 2005, 24(3),9.28 Liao X L, Li H J, Fu Q G, et al.Materials Review, 2005, 19(7),100 (in Chinese).廖晓玲, 李贺军, 付前刚, 等. 材料导报, 2005, 19(7),100.29 Pang S Y, Hu C L, Yang Z, et al.Journal of Mechanical Engineering, 2018, 54(9),97 (in Chinese).庞生洋, 胡成龙, 杨鸷, 等. 机械工程学报, 2018, 54(9),97.30 An N, Li C J, Ji A L. Carbon Techniques, 2015 (3),27 (in Chinese).安娜, 李崇俊, 嵇阿琳. 炭素技术, 2015 (3),27.31 Qin T, Qi L H, Song Y S, et al. Materials Review B Research Papers, 2013, 27(3),140 (in Chinese).秦涛, 齐乐华, 宋永善, 等. 材料导报:研究篇, 2013, 27(3),140.32 Wang H B, Zhang W H, Yang J G, et al. Acta Materiae Compositae Sinica, 2008, 25(3),182 (in Chinese).汪海滨, 张卫红, 杨军刚, 等. 复合材料学报, 2008, 25(3),182.33 Ai S, Fang D, He R, et al. Composites Part B Engineering, 2014, 71,113.34 Liao J Q, Huang B Y, Shi G, et al. Journal of Central South University(Science and Technology), 2002, 33(5),500 (in Chinese).廖寄乔, 黄伯云, 石刚, 等. 中南大学学报(自然科学版), 2002, 33(5),500.35 Mei Z S, Shi C Y, Wu W E. Journal of Solid Rocket Technology, 2017, 40(6),762 (in Chinese).梅宗书, 石成英, 吴婉娥. 固体火箭技术, 2017, 40(6),762.36 Yang X, Huang Q Z, Su Z A, et al.Aerospace Materials & Technology, 2014, 44(1),1 (in Chinese).杨鑫, 黄启忠, 苏哲安, 等. 宇航材料工艺, 2014, 44(1),1.37 Xie J, Li K Z, Sun G D, et al. Ceramics International, 2017, 43,14642.38 Li C, Li K, Li H, et al. Corrosion Science, 2013, 75(7),169.39 Wang S L, Li K Z, Li H J, et al. Materials Letters, 2013, 107(10),99.40 Huang Y C. Research on oxidation technology of the carbon/carbon composites technique modified by borate. Master's Thesis, Shaanxi University of Science and Technology, China, 2014 (in Chinese).黄毅成. 碳/碳复合材料抗氧化硼酸盐改性技术的研究. 硕士学位论文, 陕西科技大学, 2014.41 Gao M J. The research on matrix modification of C/C composites and their oxidation resistance. Ph.D. Thesis,Shanghai University, China, 2013 (in Chinese).高孟姣. C/C复合材料的基体改性及其抗氧化研究. 博士学位论文, 上海大学, 2013.42 Shao C Y, Yin X W, Zhang L T, et al. Acta Materiae Compositae Sinica, 2012, 29(3),59 (in Chinese).邵春艳, 殷小玮, 张立同, 等. 复合材料学报, 2012, 29(3),59.43 Liu W, Liu R J, Cao Y B, et al. Fiber Reinforced Plastics/Composites, 2013(2),52 (in Chinese).刘伟, 刘荣军, 曹英斌, 等. 玻璃钢/复合材料, 2013(2),52.44 Wang L L, Ma W M, Ji A L, et al.Journal of Materials Engineering, 2014(7),34 (in Chinese).王玲玲, 马文闵, 嵇阿琳, 等. 材料工程, 2014(7),34.45 Cao Y, Liu R J, Cao Y B, et al. Journal of Materials Engineering, 2016, 44(7),19 (in Chinese).曹宇, 刘荣军, 曹英斌, 等. 材料工程, 2016, 44(7),19.46 Ma Q S, Liu H T, Pan Y, et al.Journal of Inorganic Materials, 2013, 28(3),247 (in Chinese).马青松, 刘海韬, 潘余, 等. 无机材料学报, 2013, 28(3),247.