Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2897-2906    https://doi.org/10.11896/j.issn.1005-023X.2018.17.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
核聚变堆包层结构材料研究进展及展望
徐玉平1, 吕一鸣1,2, 周海山1, 罗广南1,2
1 中国科学院等离子体物理研究所,合肥 230031;
2 中国科学技术大学,合肥 230026
A Review on the Development of the Structural Materials of the Fusion Blanket
XU Yuping1, LYU Yiming1,2, ZHOU Haishan1, LUO Guangnan1,2
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031;
2 University of Science and Technology, Hefei 230026
下载:  全 文 ( PDF ) ( 2227KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类对能源需求的增加,核聚变能的发展越来越受到人们的关注。材料问题是目前限制聚变能发展的一个重要因素。包层是实现能量转换、氚自持及辐照屏蔽的主要部件,满足包层结构材料苛刻环境要求的结构材料的开发及性能检测成为目前研究的热点。
   以低活化铁素体马氏体(RAFM)钢为代表的包层结构材料已发展多年,然而依据中国聚变能发展路线图,CFETR一期包层结构材料的中子辐照水平可达到约10 dpa,在二期达到约50 dpa,目前没有材料能满足包括抗辐照损伤在内的苛刻环境要求并能满足工程建设需求。
   低活化铁素体马氏体钢是目前包层结构材料的首选候选结构材料,国内外已开发了多个牌号的低活化品种并具备了丰富的材料基础数据库,然而低活化钢的工作温度区间严重受限,高温蠕变及抗辐照能力无法满足CFETR二期及未来聚变堆的要求。为解决传统RAFM钢的不足,提出了两条思路:一种是添加氧化物弥散相以有效提高高温蠕变强度,其中又以制备过程中是否涉及机械合金化可进行进一步的区分;另一种思路是基于热力学模拟计算,优化RAFM钢化学成分并进行多轮热机械处理以增加MX相密度。其中,机械合金化制作的氧化物弥散强化钢(ODS钢)的性能最佳,但受限于机械合金化法,成本高且效率低。非机械合金化ODS钢与优化的RAFM钢的性能接近机械合金化ODS钢,成本远远低于机械合金化ODS钢且制备效率高,大批量制备技术相对容易。除了铁基材料外,钒合金及碳化硅复合材料在多方面展现了优势,长期以来都是研究人员关注的热点。钒合金的热蠕变和氦脆导致温度上限低并且与氢同位素兼容性不好,碳化硅复合材料的规模化生产及连接技术仍存在困难,这些缺陷限制了钒合金与碳化硅复合材料的发展,使之在现阶段无法满足应用需求。面向更高辐照水平的示范堆及商用堆,目前已有的包层结构材料可能无法满足需求。根据目前很有限的研究数据,非晶材料及高熵合金的工程应用还非常遥远:一方面需要借助材料设计和制备的新理念、新方法不断挖掘现有材料的性能潜力,另一方面应重视具有潜在优势的复合块状非晶材料及低活化高熵合金等新型材料的研发。
   本文依据中国磁约束聚变材料路线图草稿,对RAFM钢、机械合金化制备的ODS钢,钒合金以及碳化硅复合材料的发展进行了综述,对最近几年兴起的改良RAFM钢、非机械合金化制备的ODS钢等新型候选结构材料进行了介绍,并对具有更佳性能的先进结构材料种类进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐玉平
吕一鸣
周海山
罗广南
关键词:  核聚变  包层  结构材料    
Abstract: With the advance of ITER and CFETR, issues concerning materials become a serious problem which limits the development of fusion energy. Blanket is an important components for energy transform, tritium sustain and radiation shielding. The development of structural materials which fit the requirement of the harsh service environment has become a research focus worldwide.
   Various blanket structural materials such as reduced activation ferritic/martensitic steels (RAFMs) have been developed for decades. Based on the Roadmap of Fusion Energy of China, the neutron irradiation dose in the structural materials can reach 10 dpa in Phase 1, and 50 dpa in Phase 2. Until now, there are no materials that can satisfy both the harsh working environment requirement and engineering building requirement.
   RAFM steels are the main candidate for the blanket structural materials. Several specification of RAFM steels have been deve-loped worldwide, and the database has been established. However, limited by the narrow working temperature range and the low creep strength at high temperature, RAFM steels cannot reach the requirement of the CFETR Phase 2 and future fusion reactor. Two method have been proposed, one is adding oxide dispersion phase into the steel to promote the high creep performance, the steels obtained by this method is called oxide dispersion strengthened steels (ODSs). This method can be further classified into two kinds depending on if the mechanical alloyed (MA) is needed in the manufacture process. The other method is based on computational thermodynamics modelling. The density of MX phase can be increased by modifying chemical composition and thermomechanical treatments. The ODSs obtained by MA have the best performance at high temperature and under irradiation, but it should be noted that the MA process is of high cost and low efficiency. The none-MA ODSs and modified RAFM steels have the properties close to those of the MA ODSs, and they are much cheaper than the MA ODSs with potential for large-scale manufacture. Except for structural materials based on iron, vanadium alloys and SiC composite materials are all candidates for blanket structural materials with some good properties over the steels. For vanadium alloys, their working upper temperature is low and they are not compatible with hydrogen isotopes, which limits the application of vanadium in fusion reactor. For SiC composite materials, the joint technology and large-scale manufacture remain as problems. For future fusion reactor, the irradiation dose of the structural materials is larger, thus the current candidate materials may not fully satisfy the requirement. In the future, two aspects should be attached great attention to, one is exploring the performance potential of existing materials with the help of new ideas and new methods of material design and preparation, the other one is development of new materials like the metallic glass composites and high-entropy alloys.
   According to the Roadmap of Fusion Reactor Materials of China, we review the development of the structural materials of the fusion blanket in this article. The development of RAFM steel, mechanical alloyed (MA)oxide dispersion strengthened steels (ODSs), vanadium alloys and SiCf/SiC has been introduced. In recent years, new types of structural materials emerge, such as mo-dified RAFMs and none-MA ODSs, which have also been described in this article. Finally, the authors look ahead the development of advanced structural materials with better performance.
Key words:  nuclear fusion    blanket    structural materials
               出版日期:  2018-09-10      发布日期:  2018-09-19
ZTFLH:  TG142  
  TG146  
基金资助: 国家自然科学基金(11505232;11405201);博士后创新人才支持计划(BX201700248)
通讯作者:  罗广南: 男,1964年生,研究员,博士研究生导师,主要从事核聚变材料相关的研究 E-mail:gnluo@ipp.ac.cn   
作者简介:  徐玉平:男,1991年生,博士,主要从事聚变包层结构材料研究 E-mail:xuyp@ipp.ac.cn
引用本文:    
徐玉平, 吕一鸣, 周海山, 罗广南. 核聚变堆包层结构材料研究进展及展望[J]. 材料导报, 2018, 32(17): 2897-2906.
XU Yuping, LYU Yiming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Structural Materials of the Fusion Blanket. Materials Reports, 2018, 32(17): 2897-2906.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.001  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2897
20181223144141  
1 The ITER Project. http://www.iter.org.
2 Peng Y K M, Canik J M, Diem S J, et al. Fusion nuclear science facility (FNSF) before upgrade to component test facility (CTF)[J].Fusion Science and Technology,2011,60(2):441.
3 Wan B, Ding S, Qian J, et al. Physics design of CFETR: Determination of the device engineering parameters[J].IEEE Transactions on Plasma Science,2014,42(3):495.
4 Wan Y, Li J, Liu Y, et al. Overview of the present progress and activities on the CFETR[J].Nuclear Fusion,2017,57(10):102009.
5 Bai Y Q, Chen H L, Liu S L, et al. Comparison analysis of fusion breeder blanket concepts[J].Chinese Journal of Nuclear Science and Engineering,2008,28(3):249(in Chinese).
柏云清,陈红丽,刘松林,等.聚变堆增殖包层概念特征比较研究[J].核科学与工程,2008,28(3):249.
6 Chen H L, Li M, Lv Z L, et al. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR[J].Fusion Engineering and Design,2015,96-97:89.
7 Jiang K C, Li J, Zhang X K, et al. The dvelopment and application of one thermal-hydraulic program based on ANSYS for design of ceramic breeder blanket of CFETR[J].Journal of Fusion Energy,2015,34(5):1088.
8 Liu S L, Pu Y, Cheng X M, et al. Conceptual design of a water cooled breeder blanket for CFETR[J].Fusion Engineering and Design,2014,89(7-8):1380.
9 Cramer B A, Davis J W. Fracture-mechanics issues for irradiated blanket structures[J].Nuclear Engineering & Design,1980,58(2):267.
10 Benamati G, Fazio C, Ricapito I, Mechanical and corrosion beha-viour of EUROFER 97 steel exposed to Pb-17Li[J].Journal of Nuc-lear Materials,2002,307,1391.
11 Wrisley K L, Duquette D J, Steiner D, et al. Corrosion studies of a stainless-steel structure for the ITER aqueous lithium salt blanket concept[J].Fusion Engineering and Design,1990,13(1):45.
12 Bloom E E. Mechanical-properties of materials in fusion-reactor 1st-wall and blanket systems[J].Journal of Nuclear Materials,1979,s85-s86:795.
13 Kimura A. Overview of fusion structural materials options: Radiation effects on materials[C]//ICFRM-16. Beijing,2013.
14 王宇钢.中国磁约束聚变堆材料发展路线图[C]//第四届核聚变堆材料论坛.江油,2017.
15 Chen Changan, Liu Changsong, Liu Xiang, et al. Roadmap and developments of fusion reactor materials for CFETR[C]//2nd Technical Exchange Meeting on CFETR and EU-DEMO Fusion Reactor Design.Beijing,2018.
16 Tavassoli A A F, Diegele E, Lindau R, et al. Current status and recent research achievements in ferritic/martensitic steels[J].Journal of Nuclear Materials,2014,455(1-3):269.
17 Wang P, Chen J, Fu H, et al. Effect of N on the precipitation beha-viours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing[J].Journal of Nuclear Materials,2013,442(1-3):S9.
18 Huang Q Y, Yu J N, Wan F R, et al. The development of low activation martensitic steels for fusion reactor[J].Chinese Journal of Nuclear Science and Engineering,2004,24(1):56(in Chinese).
黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1):56.
19 Feng K M, Pan C H, Zhang G S, et al. Chinese, progress on solid breeder TBM at SWIP[J].Fusion Engineering and Design,2010,85(10-12):2132.
20 Feng K M, Zhang G S, Hu G, et al. New progress on design and R&D for solid breeder test blanket module in China[J].Fusion Engineering and Design,2014,89(7-8):1119.
21 Xiong X, Yang F, Zou X, et al. Effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel for fusion application[J].Journal of Nuclear Materials,2012,430(1-3):114.
22 Yu C, Yang F, Suo J, et al. The effect of Ti, N and V content and heat treatment on irradiation and mechanical property of SCRAM steels[C]//International Conference on Nuclear Engineering.Prague,2014.
23 Shi Q, Liu J, Luan H, et al. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 ℃[J].Journal of Nuclear Materials,2015,457:135.
24 Yang K, Yan W, Wang Z G, et al. Development of a novel structu-ral material (simp steel) for nuclear equipment with balanced resis-tances to high temperature,radiation and liquid metal corrosion[J].Acta Metallurgica Sinica,2016,52(10):1207(in Chinese).
杨柯,严伟,王志光,等.核用新型耐高温、抗辐照、耐液态金属腐蚀结构材料——SIMP钢的研究进展[J].金属学报,2016,52(10):1207.
25 Tanigawa H, Gaganidze E, Hirose T, et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications[J].Nuclear Fusion,2017,57(9):092004.
26 Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO[J].Journal of Nuclear Materials,2011,417(1-3):43.
27 Zhang X, Liu S, Zhu Q, et al. Activation and environmental aspects of in-vacuum vessel components of CFETR[J].Plasma Science & Technology,2016,18(11):1130.
28 Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems[J].Journal of Nuclear Materials,2011,417(1-3):176.
29 Zinkle S J, Mslang A, Muroga T, et al. Multimodal options for materials research to advance the basis for fusion energy in the ITER era[J].Nuclear Fusion,2013,53(10):4024.
30 Lu C, Lu Z, Wang X, et al. Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation[J].Scientific Reports,2017,7:40343.
31 Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J].Engineering Failure Analysis,2011,18(8):1943.
32 Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J].Joural of Nuclear Materials,2016,478:42.
33 Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service[J].Journal of Nuclear Materials,2016,479:515.
34 Lizhen Tan, Lance Snead. Development of castable nanostructured alloys(CNAs) as a new generation RAFM steels[C]//The 18th International Conference on Fusion Reactor Materials (ICFRM-18). Aomori, Japan,2017.
35 Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J].Nuclear Fusion,2017,57(9):092005.
36 Stork D, Agostini P, Boutard J L, et al. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment[J].Journal of Nuclear Materials,2014,455(1-3):277.
37 Stork D, Agostini P, Boutard J L, et al. Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group[J].Fusion Engineering and Design,2014,89(7-8):1586.
38 Rieken J R, Anderson I E, Kramer M J, et al. Reactive gas atomization processing for Fe-based ODS alloys[J].Journal of Nuclear Materials,2012,428(1-3):65.
39 Gil E, Ordas N, Garcia-Rosales C, et al. ODS ferritic steels produced by an alternative route (STARS): Microstructural characterisation after atomisation, HIPping and heat treatments[J].Powder Metallurgy,2016,59(5):359.
40 Y Q, Xia M. Vacuum casted F/M Steels containing a dense uniform dispersion of oxides nanoclusters with high strength and irradiation resistance stability[C]//The 18th International Conference on Fusion Reactor Materials (ICFRM-18).Aomori,Japan,2017.
41 Wang W, Wu E, Liu S, et al. Segregation and precipitation formation for in situ oxidised 9Cr steel powder[J].Metal Science Journal,2015,33(1):104.
42 Muroga T. 4.12-Vanadium for nuclear systems[J].Comprehensive Nuclear Materials,2012,189(4):391.
43 郝嘉琨.聚变堆材料[M].北京:化学工业出版,2007.
44 Muroga T, Chen J M, Chernov V M, et al. Review of advances in development of vanadium alloys and MHD insulator coatings[J].Journal of Nuclear Materials,2007,367(10):780.
45 Duan X R, Chen J M, Feng K M, et al. Progress in fusion technology at SWIP[J].Fusion Engineering and Design,2016,109:1022.
46 Tanabe T. Tritium issues to be solved for establishment of a fusion reactor[J].Fusion Engineering and Design,2012,87(5-6):722.
47 Richardson I A, Leachman J W. Thermodynamic properties status of deuterium and tritium[J].Advances in Cryogenic Engineering,2012,57a-57b(1434):1841.
48 Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactions issues for ITER[J].Journal of Nuclear Materials,2009,390-391:1.
49 Shimada M, Pitts R, Loarte A, et al. ITER research plan of plasma-wall interaction[J].Journal of Nuclear Materials,2009,390-391:282.
50 Farabolini W, Ciampichetti A, Dabbene F, et al. Tritium control modelling for a helium cooled lithium-lead blanket of a fusion power reactor[J].Fusion Engineering and Design,2006,81(1):753.
51 Frazer D, Abad M D, Krumwiede D, et al. Localized mechanical property assessment of SiC/SiC composite materials[J].Composites Part A Applied Science & Manufacturing,2015,70:93.
52 Yoshida K, Akimoto H, Yano T, et al. Mechanical properties of unidirectional and crossply SiCf/SiC composites using SiC fibers with carbon interphase formed by electrophoretic deposition process[J].Progress in Nuclear Energy,2014,82:148.
53 Snead L L, Nozawa T, Ferraris M, et al. Silicon carbide composites as fusion power reactor structural materials[J].Journal of Nuclear Materials,2011,417(1-3):330.
54 Hu Z Q, Zhang H F. Recent progress in the area of bulk amorphous alloys and composites[J].Acta Metallurgica Sinica,2010,46(11):1391(in Chinese).
胡壮麒,张海峰.块状非晶合金及其复合材料研究进展[J].金属学报,2010,46(11):1391.
55 Song W, Wu Y, Wang H, et al. Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites[J].Advanced Materials,2016,28(37):8156.
56 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299.
57 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153.
58 Kumar N, Li C, Leonard K J, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation[J].Acta Materialia,2016,113:230.
[1] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[2] 罗来马, 徐梦瑶, 昝祥, 朱晓勇, 李萍, 程继贵, 吴玉程. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 41-46.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed