Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 15-20    https://doi.org/10.11896/j.issn.1005-023X.2017.03.003
  材料综述 |
“三明治”型超材料吸波体及其设计优化的研究现状*
高海涛, 王建江, 许宝才, 李泽, 刘嘉玮
军械工程学院先进材料研究所,石家庄 050003;
Research Status and Tendency of Sandwich-structured Metamaterial Absorbers and Its Design Optimization
GAO Haitao, WANG Jianjiang, XU Baocai, LI Ze, LIU Jiawei
Advanced Material Institute, Mechanical Engineering College, Shijiazhuang 050003;
下载:  全 文 ( PDF ) ( 1597KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料吸波体因其独特的性质,自出现以来一直是吸波材料研究的热点。主要介绍了三明治型超材料吸波体的结构类型和研究现状,对三明治型超材料吸波体的设计原则和优化方法进行了概述,并对三明治型超材料吸波体的发展进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高海涛
王建江
许宝才
李泽
刘嘉玮
关键词:  超材料吸波体  三明治结构  结构类型  设计优化    
Abstract: The metamaterial absorbers possess unique properties, have been one research hotspots of absorbing materials since been created. In this paper, the structure types and research status of the sandwich metamaterial absorbers are introduced, and the design principles and optimization methods of sandwich metamaterial absorbers are summarized. In the end, the developing trend and the issues to be resolved of sandwich metamaterial absorbers are discussed.
Key words:  metamaterial absorbers    sandwich structure    structure types    design and optimization
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: *国家自然科学基金(51172282);河北省自然科学基金(E2015506011)
作者简介:  高海涛:男,1989年生,博士研究生,主要从事吸波材料的研究 E-mail: gaohaitao12y1034@163.com 王建江:通讯作者,男,教授,主要从事热加工技术的研究 E-mail:JJWang63@heinfo.net
引用本文:    
高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
GAO Haitao, WANG Jianjiang, XU Baocai, LI Ze, LIU Jiawei. Research Status and Tendency of Sandwich-structured Metamaterial Absorbers and Its Design Optimization. Materials Reports, 2017, 31(3): 15-20.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.003  或          http://www.mater-rep.com/CN/Y2017/V31/I3/15
1 张明习.超材料概论[M].北京:国防工业出版社,2014.
2 Liu Chunyi, Feng Tuoyu. The metamaterials and its application in the field of missile equipment[J]. Aerodynamic Missile J,2013(3):83(in Chinese).
刘春义,冯拓宇. 超材料及其在导弹装备领域中的应用[J].飞航导弹,2013(3):83.
3 Liang K S, Hai F C, Yong J Z, et al. Low-frequence and broad band metamaterial absorber: Design, fabrication and characterization[J]. Appl Phys A: Mater Sci Processing,2011,105(1):49.
4 Sai S, Hua M, Jia F W, et al. Two-dimensional QR-coded metamaterial absorber[J].Appl Phys A,2016,122:28.
5 Kang M, Shen N H, Chen J, et al. A new planar left-handed metamaterial composed of metal-dielectric-metal structure [J]. Optics Express,2008,16(12):8617.
6 Cheng Yongzhi, Nie Yan, Gong Rongzhou, et al. Design of an ultrathin and wideband metamaterial absorber based on resistance fil and fractal frequency selective surface[J]. Acta Phys Sin,2013,62(4):044103(in Chinese).
程用志,聂彦,龚荣洲,等.基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J].物理学报,2013,62(4):044103.
7 Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett,2008,100:207402.
8 Mayank A, Ashis K B, Manoj K M. Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber [J].Appl Phys A,2016,122:166.
9 Wang G Z, Wang B X. Five-band terahertz metamaterial absorber based on a four-gap comb resonator[J]. J Lightwave Technol,2015,33(24):5151.
10 Sun J B, Liu L Y, Dong G Y, et al. An extremely broadband metamaterial absorber based on destructive interference[J]. Optics Express,2011,19(22):21155.
11 Gu C, Qu S B, Pei Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chinese Phys Lett,2010,27(11):117802.
12 Zhang Jing. Design and study of novel electromagnetic devices based on metasurfaces[D]. Lanzhou: Lanzhou University,2014(in Chinese).
张婧.基于人工超表面的新型电磁器件的设计及研究[D].兰州:兰州大学,2014.
13 Gu Chao, Qu Shaobo, Pei Zhibin, et al. Design of a wide-band metamaterial absorber based on loaded magnetic resonators[J]. Acta Phys Sin,2011,60(8):087801(in Chinese).
顾超,屈绍波,裴志斌,等.基于磁谐振器加载的宽频带超材料吸波体的设计[J]. 物理学报,2011,60(8):087801.
14 Cheng Y Z, Zhou R, Cheng Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications,2011,361:41.
15 Wang Ying, Cheng Yongzhi, Nie Yan, et al. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements[J]. Acta Physica Sinica,2013,62(7):074101(in Chinese).
王莹,程用志,聂彦,等.基于集总元件的低频宽频带超材料吸波体设计与实验研究[J].物理学报,2013,62(7):074101.
16 Li W, Wu T L, Guan J G, et al. Integratingnon-planar metamate-rials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers[J]. Appl Phys Lett,2014,104(2):022903.
17 Pang Y Q, Zhou Y J, Wang J. Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of the metamaterial absorbers[J]. J Appl Phys,2011,110(2):023704.
18 Gu Chao, Qu Shaobo, Pei Zhibin, et al. Design of a wide-band metamaterial absorber based on resistance films[J]. Acta Phys Sin,2011,60(8):087802(in Chinese).
顾超,屈绍波,裴志斌,等.基于电阻膜的宽频带超材料吸波体的设计[J].物理学报,2011,60(8):087802.
19 Zhou Zhuohui, Huang Daqing, Liu Xiaolai, et al. Application deve-lopments of metamaterials in wideband microwave absorbing mate-rials[J]. J Mater Eng,2014(5):91(in Chinese).
周卓辉,黄大庆,刘晓来,等.超材料在宽频微波衰减吸收材料中的应用研究进展[J].材料工程,2014(5):91.
20 Li Zengang. The preparation and property of La1-xSrxMnO3 ceramic absorbing coating[D]. Changsha: National University of Defense Technology,2012(in Chinese).
李增刚. 锰酸锶镧陶瓷涂层制备与性能研究[D].长沙:国防科技大学,2012.
21 Minyeong Yoo, HyungKi Kim, Sungjoon Lim. Angular and polarization insensitive metamaterial absorber using subwavelength unit cell in multilayer technology[J]. IEEE Antennas Wireless Propagation Lett,2016,15:414.
22 Simth D R, Schurig D, Pendry J B. A negative refraction of modulated electromagnetic waves[J]. Phys Lett,2008,88:187401.
23 Zhu B, Wang Z, Huang C. Polarization insensitive metamaterial absorber with wide incident angle[J]. Prog Electromagnetics Res,2010,101(2):231.
24 Zhao Xiaopeng, Zhang Yanping, Liu Yahong. High-gain microstri-pantenna based on perfect absorbing metamaterial[J]. Chinese J Radio Sci,2012(2):67(in Chinese).
赵晓鹏,张燕萍,刘亚红.基于完全吸收超材料的高增益微带天线[J].电波科学学报,2012(2):67.
25 Yao Lifang, Li Minhua, Dong Jianfeng. Research progress in polarization property of metamaterial absorber[J]. Mater Rev: Rev,2015,29(4):52(in Chinese).
姚丽芳,李敏华,董建峰.超材料吸波器的极化特性研究进展[J].材料导报:综述篇,2015,29(4):52.
26 Yang Huanhuan, Cao Xiangyu, Gao Jun, et al. Low-RCS waveguide slot array antenna based on a metamaterial absorber[J]. Acta Phys Sin,2013,62(6):064103(in Chinese).
杨欢欢,曹祥玉,高军,等.基于超材料吸波体的低雷达散射截面微带天线设计[J].物理学报,2013,62(6):064103.
27 Song Huihui, Zhou Wangcheng, Luo Fa, et al. Metamaterial absorber: Present status and prospect[J]. Mater Rev: Rev,2015,29(9):43(in Chinese).
宋荟荟,周万城,罗发,等.超材料吸波体研究进展与展望[J].材料导报:综述篇,2015,29(9):43.
28 Zhao Bihui, Wen Qiye, Xie Yunsong, et al. Research progress of electromagnetic metamaterial absorber[J]. Electronic Components Mater,2011,30(11):82(in Chinese).
赵碧辉,文岐业,谢云松,等.电磁超材料吸波器的研究进展[J].电子元件与材料,2011,30(11):82.
29 Zhou W C, Wang P H, Wang N, et al. Microwave metamaterial absorber based on multiple square ring structures[J]. AIP Adv,2015,5:117109.
30 Shen X P, Cui T J, Zhao J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401.
31 Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. Nat Mater,2012,12(1):25.
32 高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2007.
33 Chang L, Liao C, Lin W, et al. A hydrid method based on differential evolution and continuous ant colony optimization and its application on wide band antenna design[J]. Prog Electromagnetics Res,2012,122:105 .
34 Chen W T, Diest K, Kao C Y, et al. Gradient based optimization methods for metamaterial design[J]. Topics Appl Phys,2013,127(1):205.
35 Hidetoshi Chiba, Kazushi Nishizawa, Hiroaki Miyashita,et al. Optimal design of broadband radome using particle swarm optimization[J]. IEEJ Trans Electrical Electronic Eng,2012,7(4):343.
36 Wang Jianbo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm[J]. Acta Phys Sin,2011,60(5):050703(in Chinese).
汪剑波,卢俊. 双屏频率选择表面结构的遗传算法优化[J].物理学报,2011,60(5):050703.
37 Pang Y, Cheng H, Zhou Y, et al. Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces[J]. J Phys D: Appl Phys,2012,45(21):215104.
38 Sui Sai, Ma Hua, Wang Dongjun, et al. The design and optimization of an ultra-broad band, light-weight, and wide incident angle metamaterial absorber based on topology optimization[J]. J Funct Mater,2015, 46(23): 23056(in Chinese).
随赛,马华,王冬俊,等.一种超宽带、轻质、宽入射角超材料吸波体的拓扑优化设计[J].功能材料,2015,46(23):23056.
39 Chang Hongwei, Ma Hua, Qu Shaobo, et al. A design and realization of optimization of metamaterials based on genetic algorithm[J]. J Air Force Eng University: Nat Sci Ed,2014,15(3):89(in Chinese).
常红伟,马华,屈绍波,等.遗传算法在超材料优化设计中的应用及实现[J]. 空军工程大学学报:自然科学版,2014,15(3):89.
40 Tang Shiwei, Zhu Weiren, Zhao Xiaopeng. Multiband negative index metamaterials at optical frequencies[J]. Acta Phys Sin,2009,58(5):3220(in Chinese).
汤世伟,朱卫仁,赵晓鹏.光波段多频负折射率超材料[J].物理学报,2009,58(5):3220.
41 Hui L, Li H Y, Bin Z, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Appl Phys,2011,110:014909.
42 屈绍波,王甲富,马华,等.超材料设计及其隐身技术中的应用[M].北京:科学出版社,2013.
[1] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[2] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed