Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 129-134    https://doi.org/10.11896/j.issn.1005-023X.2017.019.018
  新材料新技术 |
用于构建可溶性微针的基质材料及其复合材料*
章捷, 马凤森, 占浩慧, 黄颖聪
浙江工业大学药学院,生物制剂与材料实验室,杭州 310014
Matrix Materials and Their Composites for Dissolvable Microneedle Construction: a Review
ZHANG Jie, MA Fengsen, ZHAN Haohui, HUANG Yingcong
Biologics and Biomaterials Laboratory, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 1333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可溶性微针作为新型透皮给药制剂,打破了传统皮肤给药制剂不能用于大分子药物经皮给药的局限,且具有无痛、无创、无出血、卫生、生物相容性好、便于患者自主使用等诸多优点。近年来可溶性微针的研究已成为备受关注的热点。基质材料的选择直接影响微针的制备及皮肤刺入、药物释放等性能。介绍了可溶性微针的研究现状,对基质材料进行了分类与介绍,并综述了基质材料的复合使用及效果。同时介绍了韧性材料和脆性材料的特性及其复合后的协同效果,进而对该领域存在的问题和研究方向进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章捷
马凤森
占浩慧
黄颖聪
关键词:  可溶性微针  材料分类  复合  韧性材料  脆性材料    
Abstract: As a novel transdermal drug delivery system, dissolvable microneedle has broken the limitations of traditional transdermal formulations which are not able to deliver macromolecular. Besides the aspect of macromolecular delivery, dissolvable microneedles have numerous advantages including small enough to avoid causing pain, minimal skin trauma, no bleeding or introduction of pathogens, good biocompatibility, easy to self-administration, etc. The study of dissolvable microneedle has recently become a hot topic. The choice of matrix materials directly affects the preparation process of microneedle, as well as the properties of skin puncturing and drug releasing. This paper introduces the research status of dissolvable microneedle, classifies and introduces the matrix materials, then summarizes the use of their compounds. The properties of ductile materials and brittle materials and their synergistic effects after composite are introduced as well. Finally, the existing problems and research directions in this field are discussed.
Key words:  dissolvable microneedle    material classification    composite    ductile material    brittle material
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  R944.9  
  TB332  
基金资助: *浙江省重点科技创新团队项目(2013TD15)
作者简介:  章捷:男,1992年生,硕士研究生,研究方向为可溶性微针透皮给药系统 E-mail:18868816195@163.com 马凤森:通讯作者,男,1962年生,硕士,教授,硕士研究生导师,研究方向为生物材料与制剂研究评价、药物制剂新剂型与新技术 E-mail:merrigen@126.com
引用本文:    
章捷, 马凤森, 占浩慧, 黄颖聪. 用于构建可溶性微针的基质材料及其复合材料*[J]. 《材料导报》期刊社, 2017, 31(19): 129-134.
ZHANG Jie, MA Fengsen, ZHAN Haohui, HUANG Yingcong. Matrix Materials and Their Composites for Dissolvable Microneedle Construction: a Review. Materials Reports, 2017, 31(19): 129-134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.018  或          http://www.mater-rep.com/CN/Y2017/V31/I19/129
1 Gerstel M S, Place V A. Drug delivery device: US, 3964482[P].1976-06-22.
2 Kim Y C, Park J H, Prausnitz M R. Microneedles for drug and vaccine delivery[J]. Adv Drug Delivery Rev,2012,64(14):1547.
3 Matsuo K, Hirobe S, Yokota Y, et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza[J]. J Controlled Release,2012,160(3):495.
4 Matsuo K, Yokota Y, Zhai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens[J]. J Controlled Release,2012,161(1):10.
5 Demuth P C, Garcia-Beltran W F, Ai-Ling M L, et al. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination[J]. Adv Funct Mater,2013,23(2):161.
6 Park Y H, Ha S K, Choi I, et al. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery[J]. Biotechnol Bioprocess Eng,2016,21(1):110.
7 Ito Y, Maeda T, Fukushima K, et al. Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin[J]. Chem Pharmaceutical Bull,2010,58(4):458.
8 Lee K, Lee C Y, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of mal-tose[J]. Biomaterials,2011,32(11):3134.
9 Zhu Z, Luo H, Lu W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide[J]. Pharmaceutical Res,2014,31(12):3348.
10 Liu S, Quan Y S, Fumio K, et al. Preparation and characterization of novel hyaluronic acid microneedles for insulin transdermal delivery[J]. J Shenyang Pharmaceutical University,2010,27(1):6(in Chinese).
刘姝, 权英淑, 神山文男, 等. 新型经皮传递胰岛素透明质酸微针制剂的制备及性能考察[J]. 沈阳药科大学学报,2010,27(1):6.
11 Liu S, Jin M N, Quan Y S, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin[J]. J Controlled Release,2012,161(3):933.
12 Liu S, Wu D, Quan Y S, et al. Improvement of transdermal delivery of exendin-4 using novel tip-loaded microneedle arrays fabricated from hyaluronic acid[J]. Mol Pharm,2016,13(1):272.
13 Ye Y, Wang J, Hu Q, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors[J]. ACS Nano,2016,10(9):8956.
14 Zhang Y, et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation[J]. Adv Mater,2017,29(4):1604043.
15 Ito Y, Murakami A, Maeda T, et al. Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats[J]. Int J Pharmaceutics,2008,349(1-2):124.
16 Tsioris K, Raja W K, Pritchard E M, et al. Fabrication of silk microneedles for controlled-release drug delivery[J]. Adv Funct Mater,2012,22(2):330.
17 Lee J W, Choi S O, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone[J]. Small,2011,7(4):531.
18 Chan C, Caffarel-Salvador E, Brady A J, et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: Potential for use in diagnosis and therapeutic drug monitoring[J]. PLOS ONE,2015,10(12):e0145644.
19 Caffarel-Salvador E, Tuan-Mahmood T M, Mcelnay J C, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations[J]. Int J Pharm,2015,489(1-2):158.
20 Lutton R E, Larraneta E, Kearney M C, et al. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays[J]. Int J Pharm,2015,494(1):417.
21 Cha K J, Kim T, Park S J, et al. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles[J]. J Micromech Microeng,2014,24(11):115015.
22 Park J H, et al. Polymer particle-based micromolding to fabricate novel microstructures[J]. Biomed Microdevices,2007,9(2):223.
23 Dangol M, Yang H, Li C G, et al. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles[J]. J Controlled Release,2016,223:118.
24 Kim J D, et al. Droplet-born air blowing: Novel dissolving microneedle fabrication[J]. J Controlled Release,2013,170(3):430.
25 Liu S, Jin M N, Quan Y S, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin[J]. Eur J Pharmaceutics Biopharmaceutics, 2014,86(2):267.
26 Sullivan S P, Murthy N, Prausnitz M R. Minimally invasive protein delivery with rapidly dissolving polymer microneedles[J]. Adv Mater,2008,20(5):933.
27 Lee J W, Park J H, Prausnitz M R. Dissolving microneedles for transdermal drug delivery[J]. Biomaterials,2008,29(13):2113.
28 Martin C J, Allender C J, Brain K R, et al. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications[J]. J Controlled Release, 2012,158(1):93.
29 Donnelly R F, Morrow D I, Singh T R, et al. Processing difficulties and instability of carbohydrate microneedle arrays[J]. Drug Deve-lopment Ind Pharmacy,2009,35(10):1242.
30 Gao Z P, Yue T L, Yuan Y H, et al. Research progress on producing technology and the applied characteristics of fructose[J]. J Northwest Sci-Tech University of Agriculture and Forestry (Nat Sci Ed),2003,31(s1):187(in Chinese).
高振鹏, 岳田利, 袁亚宏, 等. 果糖生产技术和应用研究进展[J]. 西北农林科技大学学报(自然科学版),2003,31(s1):187.
31 Mcgrath M G, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration[J]. Eur J Pharmaceutics Biopharmaceutics,2014,86(2):200.
32 Peng Y F, Zhou Y B, Li Q, et al. Application prospect of trehalose[J]. China Food Additives, 2009(1):42(in Chinese).
彭亚锋, 周耀斌, 李勤, 等. 海藻糖的特性及其应用[J]. 中国食品添加剂,2009(1):42.
33 Vrdoljak A, et al. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods[J]. J Controlled Release,2016,225:192.
34 Choi H J, Yoo D G, Bondy B J, et al. Stability of influenza vaccine coated onto microneedles[J]. Biomaterials,2012,33(14):3756.
35 Lee K, Jung H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications[J]. Biomaterials,2012,33(30):7309.
36 Chu L Y, Prausnitz M R. Separable arrowhead microneedles[J]. J Controlled Release,2011, 149(3):242.
37 Wei P P. Extraction and preparation of raffinose from defatted wheat germ[D]. Wuxi: Jiangnan University,2011(in Chinese).
魏培培. 脱脂麦胚中棉子糖的提取制备[D]. 无锡:江南大学,2011.
38 Zhang Y K, Jin J S. A kind of functional cosmetic ingredient—Hya-luronic acid[J]. China Surfactant Detergent Cosmetics,2004,34(2):111(in Chinese).
张延坤, 金京顺. 一种功能性化妆品原料——透明质酸[J]. 日用化学工业,2004, 34(2):111.
39 Bian J, Zhou Y P. Clinical application of hyaluronic acid [J]. Chin J Injury Repair Wound Healing (Electron Ed),2008,3(5):60(in Chinese).
卞靖, 周业平. 透明质酸的临床应用[J]. 中华损伤与修复杂志(电子版),2008,3(5):60.
40 Lu L, Leng Y, Chen Y. An experiment study on wound healing with exogenous hyaluronic acid[J]. Chin J Plastic Surgery,2000(1):30(in Chinese).
吕洛, 冷永成,陈玉林. 透明质酸对创面愈合胶原代谢影响的实验研究[J]. 中华整形外科杂志, 2000(1):30.
41 Katsumi H, Liu S, Tanaka Y, et al. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: Evaluation of transdermal absorption, safety, and pharmacological effects after application in rats[J]. J Pharmaceutical Sci,2012,101(9):3230.
42 Monkare J, Reza Nejadnik M, Baccouche K, et al. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein deli-very[J]. J Controlled Release,2015,218:53.
43 Gao C M, Liu M Z, Lv S Y, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Prog Chem,2013,25(6):1012(in Chinese).
高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展,2013,25(6):1012.
44 Yusuf K, Demir Z A, Oya Kerimoglu. Sodium alginate microneedle arrays mediate the transdermal delivery of bovine serum albumin[J]. Plos One,2013,8(5):1224.
45 Li H P, Li B, et al. Advances in characterization of amylose and amylopectin starch[J]. Food Sci,2010,31(11):273(in Chinese).
李海普, 李彬, 等. 直链淀粉和支链淀粉的表征[J]. 食品科学,2010,31(11):273.
46 Wendorf J R, Ghartey-Tagoe E B, Williams S C, et al. Transdermal delivery of macromolecules using solid-state biodegradable microstructures[J]. Pharmaceutical Res,2010,28(1):22.
47 Hassan C M, Stewart J E, Peppas N A. Diffusional characteristics of freeze/thawed poly(vinyl alcohol) hydrogels: Applications to protein controlled release from multilaminate devices[J]. Eur J Pharmaceutics Biopharmaceutics,2000,49(2):161.
48 Dou X W. Preparation of phase transition hydrogel microneedle arrays for transdermal delivery of insulin[D]. Shanghai: Shanghai Jiao Tong University,2009(in Chinese).
窦学文. 用于胰岛素透皮给药的相转化水凝胶微针点阵的制备[D]. 上海:上海交通大学, 2009.
49 Fukushima K, Ise A, Morita H, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats[J]. Pharmaceutical Res,2010,28(1):7.
50 Hiraishi Y, Nakagawa T, Quan Y S, et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system[J]. Int J Pharmaceutics,2013,441(1-2):570.
51 Hou J. The study on insoluble silk microneedle[D]. Suzhou:Soochow University,2014(in Chinese).
侯静. 不溶化丝素微针的制备与研究[D]. 苏州:苏州大学,2014.
52 Yu J. Synthesis and characterization of polvglycolicacid[D]. Wuhan: Wuhan University of Technology,2006(in Chinese).
于娟. 聚羟基乙酸(PGA)的合成及性能表征[D]. 武汉:武汉理工大学,2006.
53 Wang Z Y, Zhao Y M. Polyglycolic acid biodegradable polymer[J]. Guangzhou Chem, 2004,29(1):50(in Chinese).
汪朝阳, 赵耀明. 聚乙醇酸类生物降解高分子[J]. 广州化学,2004,29(1):50.
54 Park J H, Allen M G, Prausnitz M R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery[J]. J Controlled Release,2005,104(1):51.
55 Yu D M, Cao Y M. Absorbable polymer polyglycolic acid[J]. New Chem Mater,1996(1):17(in Chinese).
于德梅, 曹有名. 可吸收性聚合物聚乙醇酸[J]. 化工新型材料,1996(1):17.
56 Park J H, et al. Polymer microneedles for controlled-release drug delivery[J]. Pharmaceutical Res,2006,23(5):1008.
57 Kim M, Jung B, Park J H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials,2012,33(2):668.
58 Wang D G, Zhen H, Hu Y J, et al. Biocompatibility study of implantation and degradation products of polyvinyl alcohol[J]. Beijing Biomed Eng,1996(3):165(in Chinese).
王定国, 郑华, 胡颖嘉, 等. 聚乙烯醇体内植入和降解产物生物相容性研究[J]. 北京生物医学工程,1996(3):165.
59 Donnelly R F, Majithiya R, Singh T R, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique[J]. Pharmaceutical Res,2011,28(1):41.
60 Robinson B V, Sullivan F M, Borzelleca J F, et al. PVP, a critical review of kinetics and toxicology of polyvinylpyrrolidone (povidone)[M].Boca Raton: Crc Press,1990.
61 Feng Y. Optimization of microneedles and application in the modle drug[D]. Shanghai: Shanghai Jiao Tong University,2013(in Chinese).
冯艳. 微针的处方优化及其在模型药物中的应用[D]. 上海:上海交通大学,2013.
62 Raphael A P, Prow T W, Crichton M L, et al. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays[J]. Small,2010,6(16):1785.
63 Donnelly R F, Mccrudden M T, Zaid Alkilani A, et al. Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery[J]. PLOS ONE,2014,9(10):e111547.
64 Wang Q Q, Ma T, Li J C, et al. The preparation of the dissolving microneedle array of macromolecular drugs through percutaneous release[J]. J Bengbu Medical College,2016,41(4):523(in Chinese).
王清清, 马涛, 李见春, 等. 应用于大分子药物经皮释药的可溶微针贴片制备[J]. 蚌埠医学院学报,2016,41(4):523.
65 Chu L Y, Choi S O, Prausnitz M R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs[J]. J Pharmaceutical Sci,2010,99(10):4228.
66 Wu Z Z, et al. The fabrication and optimization of complex hyaluronic acid microneedles[J]. Prog Modern Biomed,2016,16(2):206(in Chinese).
吴造展, 尹芹, 陈丽竹, 等. 复合透明质酸微针制剂的制备及优化[J]. 现代生物医学进展, 2016,16(2):206.
67 Wu X X, Cao Y J, Gui S Y. Preparation of self-dissolving microneedles and its influence on transdermal delivery of sinomenine hydrochloride gel[J]. Anhui Medical Pharmaceutical J,2015(6):1035(in Chinese).
吴星星, 曹英骥, 桂双英. 自溶性微针的制备及其对盐酸青藤碱凝胶透皮性能的影响[J]. 安徽医药,2015(6):1035.
68 Lu Y, Mantha S N, Crowder D C, et al. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays[J]. Biofabrication,2015,7(4):045001.
69 Ke C J, Lin Y J, Hu Y C, et al. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres[J]. Biomaterials,2012,33(20):5156.
70 Guo T, Zhang Y T, Zhao J H, et al. Application of lipid carriers combining microneedle in transdermal drug delivery[J]. J Chin Pharmaceutical Sci,2015,50(13):1085(in Chinese).
郭腾, 张永太, 赵继会, 等. 脂质载体结合微针在经皮给药中的应用[J]. 中国药学杂志, 2015,50(13):1085.
71 Fukuoka E, et al. Some physicochemical properties of glassy indomethacin[J]. Chem Pharmaceutical Bull,1986,34(10):4314.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 曾伟. 架空导线用热塑性复合芯棒卷绕试验及仿真[J]. 材料导报, 2019, 33(z1): 94-97.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[8] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[9] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[10] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[11] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[12] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[13] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[14] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[15] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed